
Defining Exponentiation 

Here's a loose end that needs tying up. In proving the incompleteness theorems, we took 

the language of arithmetic to include exponentiation among its primitive symbols. This was 

convenient, because it made it easy to encode a finite set of numbers by an single number. It was 

a convenient extravagance, but an unnecessary one. We can prove all our results in a restricted 

version of the language of arithmetic that eliminates "E" from among its symbols and that 

removes (47) and (48) from the axioms of Robinson's arithmetic. 

The proof, which was part of Godel's original paper, makes use of the following 

venerable theorem of number theory: 

Chinese Remainder Theorem (Qin Jiushao). Givenp,, p,, ..., p, 

relatively prime integers > 1 (that is, no two of the pis have a common 

divisor other than I), and given a sequence a,, a,, ..., a,, with each ai <pi, 

we can find a number c such that, for each i, ai is the remainder on 

dividing c by p,. 

Proof: We first show that, whenever q andp are relatively prime, we can find c and d with qc = 

pd + 1. To do this, find the least positive integer r such that there exist c and d with qc = pd + r, 

and assume, for reductio ad  absurdurn, that r >1. There are two cases: 

Case 1. r doesn't divide q. Then we can find e > 0 and s with 0 < s < r so that q + s = re . Then 

qce =pde + re, and so q(ce - 1) =pde + s. This contradicts the leastness of r. 

Case 2. r divides q. Then r doesn't dividep, and so we can find f > 0 and t with 0 < t < r so thatp 

+ t = r -  Then qcf =pdf + rf, and so qcf =p(df - 1) + t. This again contradicts the leastness of r. 

Now let Q be the product of the pis, and let qi be the quotient of Q divided by p,. Then qi 

and pi are relatively prime, so that we can find ci and di with qi *ci = p,di + 1. Thus the remainder 
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on dividing qi .ci by pi is equal to 1, and so the remainder on dividing qi .ci.ai by pi is equal to ai. 

Let e be the sum E qj .cj a? pi divides each of the qjs other than q ,  and so the remainder on 

dividing e by pi is the same as the remainder on dividing qi.ci ai by pi, which is a,EI 

We now define Godel's P-function. Let P(u,v,w) to be the remainder obtained on 

dividing u by (v~w) + 1. P can be defined by a bounded formula in the language of arithmetic. 

For x > 0, we have (xEy) = z if and only if the following formula is satisfied: 

(3u)(3v)((P(u,v,O) = 1 A (Yw <y)P(u,v, sw) = (P(u,v,w) .x)) A P(u,v,y) = 2). 

The right-to-left direction of this characterization is obvious. What is hard is to find u and v that 

verify the left-to-right direction. Given x, y, and z with (xEy) = z, let v = z!, the product of the 

positive integers I z. If s < t I z, then (s-v) + 1 and (t'v) + 1 are relatively prime, since i fp  were 

a prime that divided both of them, p would divide (t - s)v, and so, since (t - s) is one of the factors 

of v, p would divide v. But this enables us to conclude that the remainder on dividing (t'v) + 1 by 

p is one, contrary to our assumption that p divides (t'v) + 1. Use the Chinese Remainder 

Theorem to find u so that, for each t I y, xEt is the remainder on dividing u by (t'v) + 1 .Ell 

As long as our sole interest is the language of arithmetic, the fact that exponentiation can 

be treated as defined rather than primitive is a mere technical curiosity. It's practical utility 

comes when we try to show that theories expressed in languages other than the language of 

arithmetic are undecidable by interpreting Robinson's arithmetic into those other theories. If, in 

doing this, we don't have to worry about exponentiation, it makes life a lot easier. 

(47) and (48) are the recursive definition of exponentiation, and we can use Godel's beta 

function to convert this recursive definition into an explicit definition. We cannot take the 

process a step further by converting (Q5) and (Q6), which are the recursive definition of 
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multiplication, into an explicit definition, thereby eliminating multiplication as one of the 

primitive operations of the language. This follows fiom a 1929 theorem of Mojzesz Presburger, 

who showed that there is a decision procedure for the set of sentences of the language with 

nonlogical symbols "0", "s," "+," and "<" that are true in the standard model. Adding "." gives 

us an undecidable theory, so "." must not be explicitly definable.' 

'It is perhaps worth pointing out that "0," "<" and "s" can all be defined in terms of "+." 
"x = 0" can be defined as "(x + x) = x." "x < y" is defined by "(- x = y A (3z)(x + z) = y)." For 
6L sx = y," we use "(Vz)(x < z - ('y = z V y < z))." Thus, for us, the import of Presburger's theorem 
is that you can't define multiplication in terms of addition. 


