
The Language of Arithmetic 

The language of arithmetic is the language whose only individual constant is "0," whose 

function signs are "s," "+," "a," and "E," and whose predicates are "<" and "=." In the standard 

model, which we call 'bN,"l "0" denotes the number 0, the four functions signs denote the 

successor function, addition, multiplication, and exponentiation, respectively, "<" stands for 

"less than," and "=" stands for identity. More specifically: 

"0" is a term of the language of arithmetic. 

The variables "x,," "x,," "x,," "x,," and so on are terms of the language of 

arithmetic., 

If T and p are symbols of the language of arithmetic, so are ST, (T + p), 

(Top), and (TEP). 

Nothing else is a term of the language of arithmetic, unless it is required to 

be by the three clauses above. 

We have unique readability: every term is built up in a unique way. More specifically, 

for each term o, there is a unique finite labeled tree, called the structure tree for a ,  with the 

following features: 

The trunk of the tree is labeled with o. 

If a node of the true is labeled by ST, then there is directly beneath it one 

node labeled by T. 

1 We also use "N" to denote the set of natural numbers. I hope that no confusion will 

result. 

2 We'll only use these variables on black-tie occasions. Most of the time, we'll use other 

letters from the end of the alphabet as variables, to avoid proliferation of subscripts. 
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If a node is labeled by (T + p), by (zap), or by ( T E ~ ) ,  then there are two 

nodes directly beneath it, the left labeled by T and the right by p. 

Each leaf of the tree is labeled either by "0" or by a variable. 

A closed term is a term that contains no variables. Within the standard model, each 

closed term denotes a natural number, uniquely determined as follows: 

Den("0") = 0. 

Den(sz) = Den(T) + 1. 

Den((T + p)) = Den(7) + Den@). 

Den((vp)) = Den(z)*Den(p) 

Den((TEp)) = ~ e n ( T ) ~ " ( ~ ) .  

We introduce a standard numeral for each number by stipulating that [n] is the symbol obtained 

by writing n "s"s in fiont of "0," so that, for example [7] = "sssssssO." 

The function that takes the symbol T to the number Den(z) is calculable. One algorithm 

you might use for this purpose is, first, to produce a labeled tree with T at its trunk, representing 

the structure of T, as described above; and then to associate a number with the label for each 

node, working fiom the leaves toward the trunk. "0," which labels the leaves, is associated with 

0. If If the nodes associated with p and p are associated with n and m, respectively, associate 

n+m with (p + p). And so on. 

The atomic formulas of the language of the arithmetic are expressions of one of the forms 

T < p or T = p, for T and p terms. The formulas are characterized by the following stipulation: 

Every atomic formula is a formula. 

I f 0  and q are formulas, so are ( 0  V q) ,  ( 0  A q) ,  ( 0  - q) ,  ( 0  - q) ,  -0, 
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(3xJ4, and (VxJ4, for each n. 

Nothing is a formula, unless it's required to be by the clauses above. 

We have unique readability for formulas, just as for terms. 

An occurrence of the variable x, within a formula is bound iff it occurs within some 

subformula that begins with (Vq) or (3%). Occurrences that aren't bound areji-ee. A sentence is 

a formula that contains no free variables. 

For 4 a formula and r a term, let 4%lr be the formula obtained from 4 by substituting r 

for each free occurrence of x, in 4. Where there's no threat of confbsion about which variable is 

involved, we'll sometime write @(r) instead. 

Truth in the standard model is defined by first stating the truth conditions for atomic 

sentences, then seeing how the truth conditions for complex sentences are determined by the 

truth conditions for simpler sentences. A special feature of the standard model is that every 

member of the domain of discourse is named by some numeral. This special feature will simplifl 

the definition of truth, since we can define truth directly, rather than having to define truth in 

terms of satisfaction. 

r < p is true if the standard model iff Den(.r;) < Den@). 

r = p is true in the standard model iff Den(r) = Den@). 

( 4  V $) is true in the standard model iff either or both of 4 and $ are true in 

the standard model. 

( 4  A $) is true in the standard model iff both 4 and $ are true in the standard 

model. 

( 4  - $) is true in the standard model iff either 4 isn't true in the standard model 
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or $ is. 

( 4  - $) is true in the standard model iff either 4 and $ are both true in the 

standard model or neither of them is. 

-4 is true in the standard model iff 4 isn't true in the standard model. 

(3x39 is true in the standard model iff, for some k, is true in the 

standard model. 

(VxJ@ is true in the standard model iff, for every k, @%I is true in the 
[kl 

standard model. 

4 is false in the standard model iff -4 is true in the standard model. 

True arithmetic is the set of sentences true in the standard model We shall see that there 

is no decision procedure for true arithmetic, or even a proof procedure. We do, however, have 

this much: 

Proposition. There is a decision procedure for the set of true quantifier-free 

 sentence^.^ 

Proof: First note that there is a decision procedure for the set of true atomic sentences. Namely, 

T < p is true iff Den(7) < Den(p) and T = p is true iff  den(^) = Den@). The truth of a quantifier- 

free sentence is determine by the truth or untruth of its atomic components by the laws of the 

sentential calculus. A way to determine the truth or falsity of a quantifier-free sentence 0 is to 

form the structure true for 0 ,  then associating a truth value, truth or falsity, with the label of each 

node, starting with the leaves and working toward the trunk. For example, a node labeled ( 4  V 

3 Except when there's an indication to the contrary, by "true" arithmetical sentence, I shall 

mean an arithmetical sentences true in the standard model. 
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$) will be labeled "true" if and only if one or both of the nodes immediately beneath it is labeled 

"true."H 

We introduce the bounded quantiJiers: for 4 a formula and T term, (3% < T)@ will be an 

abbreviation for (3rZ3(% < T A 4). (b'q < T)@ abbreviates (b'%)(x, < T - 4).  The bounded 

formulas are characterized as follows: 

Every atomic formula is bounded. 

If 4 and $ are bounded formulas, so are ( 4  V $), ( 4  A $), ( 4  - $), ( 4  - $) 

-4, (3% < T)@, and @'% < T)@, for each n and T. 

Nothing else is a bounded formula. 

We use "p I T" and an abbreviation for "p < ST." Thus, if 4 is a bounded formula, so are (3% I 

T)@ and @iZ, I T)@, for each n and T. 

A bounded set is the extension of a bounded formula, that is, it is a set of the 

form {x: @([XI)), for some bounded formula 4 .  Similarly for bounded relations. 

The functions Pair, 1 st, and 2nd are bounded. So is the relation that holds between x and 

y iff x is an element of the set whose code number is y; we'll abuse notation slightly by writing 

"x E y." The set of code numbers of sequences is a bounded set, as is the partial function that 

takes x and i to the ith member of the sequence coded by x (which we write "(x)?) if x codes a 

sequence of length i or greater, and is undefined otherwise. 

Proposition. There is a decision procedure for the set of true bounded sentences. 

Proof: Working fiom the outside in, replace each subformula of the form (Vx < T)@ by the 

conjunction4 of all the $([k])s for k < Den(z). Replace (3x < T)$ by the disjunction of all the 

4 To make this work out smoothly, we adopt the convention that the conjunction of ($1 is 
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$([k])s for k <  den(^). Continue this until you've eliminated all the bounded quantifiers, then 

test the truth of the quantifier-free sentence that resu1ts.H 

Corollary. There is a decision procedure for each bounded set. 

Proof: If S is a bounded set, then it is the extension of a bounded formula @(x). To test whether 

n is in S, check whether @([n]) is true.H 

Every bounded set is decidable, but not every decidable set is bounded. To see this, we 

employ a variant of Cantor's diagonal argument. We can recognize a bounded formula by its 

syntactic structure, so it is possible to list all the bounded formulas that have "x" as their only 

free variable. This gives us a list of all the bounded sets. Let C = {n: n is not an element of the 

nth bounded set on the list}. C is decidable. To check whether n is in C, just write out the nth 

bounded formula on the list and check whether n satisfies it. C is not, however, bounded. For, is 

C were bounded, then there would be a number k such that C = the kth set of the list. But then 

we would have: 

k E the kth set on the list 

iff k E C (by the way k was chosen) 

iff k B the kth set of the list (by the way C was defined) 

We can employ the same argument to thwart any attempt to provide a program that 

generates programs that decide each decidable set. Either some of the programs generated won't 

just $, and the conjunction of the empty set of formulas is "0 = 0." For the conjunction fo 

a many-element set of formulas, the order in which the conjuncts are taken and the way 

they are grouped together can be chosen any way you like. Similarly, the disjunction of 

($1 is $, and the disjunction of the empty set of formulas is "- 0 = 0." 
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be decision procedures (because they will fail to provide answers for some membership 

questions) or there will be some decidable sets for which no decision procedure is generated. 

We can, however, provide a program that list programs that list each effectively 

enumerable set. For any decidable set S, there will be a program on the list that enumerates S and 

another program that enumerates the complement of S. Taken together, these two programs 

provide a program that decides S. Knowing this doesn't provide us with a method for listing 

decision procedures, because we have no algorithm for matching up the program that enumerates 

S with the program that enumerates its complement. 

In a similar way, we can show that there isn't any program that lists programs for 

calculating the calculable total functions. Any program that attempts to do this will either list a 

program for a function that isn't total or it will leave out some calculable total function. To see 

this, suppose, for reduction ad  absurdum, that we had such a master program. Define a total 

function f by: 

f(n) = 1 + the output given by the nth program on input n. 

Because f is a calculable total function, there will be a program on the list that calculates f; say 

it's the kth program. Then 

the output given by the kth program on input k 

= f(k) (by the way k was chosen) 

= 1 + the output given by the kth program on input k (by the way f was defined) 

Thus the best we can obtain is a program that lists programs that list the calculable partial 

functions. 

The Zformulas are the formulas obtained by prefixing a block of existential quantifiers 
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to a bounded formula. 

Proposition. There is a proof procedure for the set of true 2 sentences. 

Proof: Say the sentence is (3vl)(3v,) ...( 3vb4,  where 4 is bounded. The proof procedure is to 

substitute various k-tuples of numerals for the free variables in 4 until you get a sentence that's 

true. 

To prove a X procedure, all you have to do is to provide a witness. To rehte a X 

sentence, you have to shoot down infinitely many potential witnesses, and it's not too surprising 

that there is no algorithm for doing that. As we shall see later on, the set of true X sentences is 

effectively enumerable but not decidable. 

A Cset  of natural numbers is the extension of a X formula; that is, S is X iff there is a X 

formula 4 such that S = {n: @([n])). X relations are defined similarly. 

Corollary. There is proof procedure for each 2 set. 

Proof: Say S is the set of numbers that satisfy the X formula $(x). To enumerate S, start 

enumerating the true X sentences, and add n to the list for S whenever you add @([n]) to the list 

of true X sentences.H 

Proposition. If S is a 2 set, then there is a bounded formula @(x,y) such 

that S = {x: (3y)@([x],y)}. In other words, to define a X set, we don't 

require a block of existential quantifiers. A single existential quantifier 

will do. 

Proof: If S is a X set, then there is a bounded formula $(x,yl,y2, ...,ym) such that S = {x: 

(~Y~)(~Y~)...(~YJ$([xI,Y~,Y~,-.-,Y~)~. Then S = {x: ( ~ z ) ( ~ Y I  < z) (3~2 < z).--(3Ym < z) 

$([x],y,,y2, ...,y,)); the stuff that comes after the "(32)" is a bounded formu1a.H 
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If, instead of starting with a block of existential quantifiers, we start with a block of 

universal quantifiers,followed by a bounded formula, the result is a ll formula. The block of 

universal quantifiers can be replaced with a single quantifier. The extension of a formula is a 

ll set. Thus the ll sets are the complements of the x sets. A set that is both x and ll is said to be 

A. 

A confusing terminology has become entrenched. A set or relation is said to be recursive 

iff it's A. A set or relation is recursively enumerable or r.e. iff it's x. So far so good, but a x 
partial function is referred to as apartial recursive function. That's confusing, for two reasons. 

First, the phrase - "partial recursive function" as opposed to "recursive partial function" - 

suggests that what we are dealing with is a part of a total recursive function, but in fact, as we 

shall see later on, there are partial recursive functions that cannot be extended to total recursive 

functions. Second, it means that, even though a partial function (of one variable) is a kind of 

binary relation, a partial recursive function isn't a recursive binary relation, but only a 

recursively enumerable one. When there's any chance of confusion, I'll try to use ''A" and "x" 
in place of "recursive" and "recursively enumerable."(For total functions, the confusion happily 

dissipates, since a recursive total function is recursive.) 

Note that the extension of a bounded set is always x ,  since we can tack a vacuous 

existential quantifier onto the front of the bounded formula. Since the negation of a bounded 

formula is bounded, it follows that the extension of a bounded formula is always A. 

The union of two x sets is x ,  as is their intersection. If R is a x relation, {x: (3y)Rxy), 

{x: (3y < k)Rxy), and (x: (Vy < k)Rxy) are all x sets, for each k. 
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Any x total function is A, as indeed is any x partial function with a A domain. A set is 

A iff its characteristic function is A. 

Proposition. The following are equivalent, for any set S of natural numbers: 

S is x. 
S is the domain of a Z partial function. 

There is a x partial function f with domain including S such that f(n) = 1 iff n E 

S. 

There is a A relation R such that S = {x: (3y)R([x],y)). 

There is a Z relation R such that S = {x: (3y)R([x],y)). 

S is either empty or the range of a x total function. 

S is the range of a x partial function whose domain is an initial segment of the 

natural numbers. 

S is the range of a x partial function. 

S is either finite or the range of a one-one x total function. 

Proof: The proofs are analogous to the proofs of the corresponding propositions with 

"effectively enumerable" in place of "Z." The only part I want to prove here is that, if S is x ,  

then it's either finite or the range of a one-one x total function. If S is x ,  it has the form {x: 

(3y)@([x],y)}, for some bounded formula @. If S is infinite, we can define a total function with 

range S as follows: 

f(0) = lst(the least z with @(lst(z),2nd(z)). 

f(n+l) = 1 st(the least z such that @(lst(z),2nd(z)) and 1 st(z) is different from all 

the f(i)s with i I n) 
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In other words, 

f(n) = lst(the least z such that @(lst(z),2nd(z)) A (b'w < z)(either 

-@(lst(w),2nd(w)) or (3i < n)f(i) = lst(w))). 

Put a different way, f(x) = y iff there is a finite sequence s of length m that meets the following 

conditions: 

(b'n < m)(3z)(@(l st(z),2nd(z)) A @iy < z)(-@(1 st(w),2nd(w)) V (3i<n)(s), = 

lst(w))A lst(z) = (s)$. 

x < m A (s), = y. 

This all gets encoded as a x formula. There is a little more to this than meets the eye, since "lst," 

"2nd," and the notation for the components of a finite sequence aren't part of the language of 

arithmetic, but part of the dialect of English we use in talking about numbers informally. The 

relation "y = lst(x)," "y = 2nd(x)," "x encodes a sequence of length y," and "x encodes a 

sequence whose yth component is z" can all be written out as bounded formulas of the language 

of arithmetic. f(x) = y iff 

(3s)(3m I s)(s encodes a sequence of length m A 

(b'n < m)(3z I s((3u I z)(3v I z)((u = lst(z) A v = lst(z)) A @(u,v)) A 

(b'w < z)((3u I x)(3v1 W)(U = lst(w) A v = 2nd(w) A -@(u,v)) 

V (3i < n)(3t I s)(s encodes a sequence whose ith member is t A t = lst(w))) A 

(3u I z)(u = lst(z) A s encodes a finite sequence whose nth member is u)) 

A x < m A s encodes a finite sequence whose xth member is y). 

When you write this out in primitive notation and apply our rules for pulling quantifiers to the 

front (taking care to avoid collisions of bound variables), you really do get a x formu1a.H 



The Language of Arithmetic, p. 12 

We have just witnessed a special case of a general technique, devised by Frege and Godel, 

for turning recursive definitions into explicit definitions. Let us now describe the technique a little 

more abstractly. Recursive definitions of functions of one variable take two familiar forms. (For 

functions of more than one variable, not much changes. The extra variables go along for the ride.) 

The more common form of recursive definition occurs when the value of the function only 

depends on the immediately preceding value of the function. Thus the definition takes the form: 

f(0) = k 

f(n+ 1) = g(n+ 1, f(n)) 

where k is a number and g is a (total) function that is already known. We turn this into an explicit 

definition by stipulating 

f(x) = Y =I,,, 

( 3  sequence s)(3m I s)(m is the length of s A (s), = k 

A (for any n with n+l < m, (s),, = g(n+l ,(s)J) A x < m and (s), = y). 

A little more explicitly: 

(3s)(3m I s)(s encodes a sequence of length m A 

s encodes a sequence whose 0th member is [k] A 

(Vn < m)((n + [I]) < m - (3w I s)(3z I s)(s encodes a sequence 

whose (n + [l])st member is w A s encodes a sequence whose nth member is z 

A g((n + [l]),z) = w) A s encodes a sequence whose xth member is y) 

We can write this out a a x formula, once we replace "g((n + [l],z) = w)" by a x formula. 

The other form, which was the form we witnessed above, is where a value of the function 

depends on all the earlier values. For f a  function, let f I n be the code number for the sequence 
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<f(O),f(l), ..., f(n-I)>. For s the code number of a sequence of length n or greater, let s In be the 

code number for the sequence <(s),,(s),, ...,( s),-~>. I realize I'm using the same symbol for two 

different purposes, but it should be harmless. Our recursive definition takes the form 

f(n) = h(f I n), 

where h is already known. It's explicit version is this: 

f(x) = Y =a, 

( 3  finite sequence s)(3m I s)(m is the length of s A 

(b'n < m)(s), = h(s I n) A x < m A (s), = y). 

If h is x ,  so is f. 

Here again, I am claiming that a set is x on the basis of having described it by a x hybrid 

formula that contains symbols from both formal and informal arithmetic. Let me describe a 

general procedure that justifies such claims. The procedure only applies to formulas that don't 

contain "-" or "-," apart from the "-"s that occur in bounded universal quantifiers, but there's 

no loss of generality in that. Suppose a set S is defined by a x formula of the language obtained 

from the language of arithmetic by adding an extra unary function sign f that is used to denote a 

unary total recursive function. The same technique will work for sets and relations defined using 

more than one function sign, and it will work with function signs with more than one agurnent. 

We restrict our attention to the single unary function case just to keep the notation manageable. 

The strategy is simple. We cash out any atomic formula containing "f' either in terms of 

the x definition or the II definition, as appropriate, then pull the quantifiers to the front. The 

details are messy, however. 

A recursive total function is II as well as x. Let's say we have f(x) = y iff (3z)@(x,y,z) iff 
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(VZ)~(X,~,Z),  where $ and 0 are bounded. We describe a procedure for converting a x formula 

containing f that defines S to a x formula containing one fewer occurrence of f  that also defines 

S. By applying the procedure repeatedly, we obtain a x formula of the language of arithmetic that 

defines S. 

Our given occurrence of f  is either within an atomic formula or within a bounded 

existential quantifier or within a bounded universal quantifier. It is this multiplicity of 

possibilities, as well as the fact that we sometimes utilizize the x definition of f  and other times 

the II definition, that makes the procedure complicated to describe. 

The procedure proceeds in two stages. At the first stage, if the given occurrence of f  

appears within an atomic formula of the form xVIf( replace the atomic formula with 
7)' 

(3~)(3z)($(z,v,z) A x), if the atomic sentence is within the scope of an even number of negation 

signs, or with @ir)(Vz)(~(z,v,z) + x), if it's within the scope of an odd number of negation signs. 

If, on the other hand, the given occurrence of f  takes the form (3u < pv~f (T) )~ ,  replace it with 

(3~)(3z)(x(z,v,z) A (3u < p ) ~ ) ,  if the occurrence is within the scope of an even number of 

negation signs, or with (Vv)(Vz)(e(z,v,z) - (3u < p ) ~ ) ,  if the number of negations is odd. If, on 

the third hand (!), the given occurrence of f  takes the form (tlu < pvIf(T))~, replace it with either 

(~v)~z)($(T,v,z) A (Vu < p ) ~ )  or (Vv)(Vz)(e(z,v,z) - (Vu < p ) ~ ) ,  depending on whether the 

occurrence is within the scope of an even or odd number of negation signs. 

The first stage has introduced a new unbounded quantifier. The second stage applies the 

usual methods for pulling the negation sign to the front. Here are the "usual methods"; we assume 

that v doesn't occur free in V, and we change bound variables as required to avoid collisions: 

Replace ((3v)p V V) by (3v)(p V v). 
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Replace (V V (3v)p) by (3v)(v V p) 

Replace (@ir)p v V) by (b'v)(p V v). 

Replace (V V (Vv)p) by (VV)(V V p) 

Replace ((3v)p A V) by (3v)(p A v). 

Replace (V A (3v)p) by (3v)(v A p) 

Replace (@ir)p A V) by ('dv)(p A v). 

Replace (V A (Vv)p) by (VV)(V A p) 

Replace (3u < ~ ) ( 3 v ) p  by (3v)(3u < ~ ) p .  

Replace (3u < ~)(Vv)p by ('dt)(3u < T)(Vv < t)p. 

Replace ('du < ~ ) ( 3 v ) p  by (3t)('du < ~ ) ( 3 v  < t)p. 

Replace (Vu < ~)(Vv)p by ('dv)(Vu < T)p. 

Replace -(3v)p by ('dv)-p. 

Replace -(Vv)p by (3~) -p .  

The eventual result will be a x formula defining S. 

Let me now state, without going through the proofs, a couple of structural properties of x 
sets and relations, directly analogous to properties we noted earlier for effectively enumerable 

sets and relations: 

Proposition (Reduction Principle for x sets). For any 2 sets A and B, 

t he rea rexse t sCandDsuch tha tCcA,DrB,CnD=ca ,andCuD= 

A u B. 

Proposition (Uniformization Priniciple for x relations). For any 2 

relation R, there is a x partial h c t i o n  f with Dom(f) = {x: (3y) <x,y> E 
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R) and <x,f(x)> € R for each x € Dom(f). 


