
Robinson's Arithmetic 

We're developing the idea that a set S is 2 iff it's effectively enumerable iff there is a 

proof procedure for S. We now want to see that we can we can take the notion of "proof 

procedure" literally, by treating a proof procedure as a derivation within a certain system of 

axioms. So we now need to look at systems of axioms. 

Definition. Q, also known as Robinson's arithmetic, is the conjunction of the 

following axioms: 

(Ql) (Vx)-x=O 

(42) (VX)@'Y)(SX = SY - x = Y) 

(43) (Vx)((x + 0) = x 

(44) (VX)@'Y)(X + SY) = s(x + Y) 

(Q5) (Vx)(x.O) = 0 

(46) (Vx)(Vy)(x0sy) = ((X~Y) + x) 

(47) (Vx)(xEO) = SO 

(Qg) (Vx)(Vy)(xEsy) = ((XEY).~) 

(Q9) (Vx)- x < 0 

(QlO) (VX)@'Y)(X<SY - ( X < Y  V x =  Y)) 

(Qll)  (VX)(VY)(X<Y V (x=  Y V Y <XI) 

As an account of the natural numbers, Q is pitihlly weak. Even the very simplest 

generalizations, like the commutation laws of addition and multiplication, are underivable in Q. 

Nevertheless, we have the following: 

Theorem. Every true sentence is derivable in Q. 
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This theorem is why Q is worth looking at. Q is of no interest in itself. Our reason for bringing it 

up is that it's a single-axiom theory within which every true E sentence is provable. 

Proof: First, note that, for each m and n, 

0 = [O] 

s[m] = [sm] 

([ml+ [nl) = [m+nl 

([ml l [nl) = [man] 

([mlE[nl) = [mEnl 

are all consequences of Q. An easy induction on the complexity of terms then enables us to 

prove that, for each closed term T, there is a number n such the sentence 

T = [n] 

is a consequence of Q. An induction shows that each number m has this property:' 

(b'n)(m + n - Q 1- [m] = [n] 

A similar induction shows that, for each number n, we have: 

For every m, if m < n, then [m] < [n] is provable in Q, whereas, if m 2 n, 

then [m] < [n] is refutable2 in Q. 

Thus we see that every atomic sentence is decidable3 in Q. It follows immediately that every 

quantifier-fiee sentence is decidable in Q. Because 

Q t(b'X)lX < 0 

1 "I? 14" means that 4 is a consequence of I?. 

2 A sentence is refutable in Q iff its negation is provable in Q. 

3 A sentence is decidable in Q iff it is either provable or refutable in Q. 
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and, for each n, 

Q ('v'x)(x < [n+ I] - (X = [0] V x = [I] V . . . V x = [n])), 

every bounded formula is provably equivalent to an quantifier-fiee formula. We eliminate 

bounded quantifiers fiom he outside in, just as before. 

We now see that every bounded sentence is decidable in Q, and so, since Q is true, every 

true bounded sentence is provable in Q. Consequently, every true E sentence can be proven by 

providing a witness. EI 

Corollary. Let r' be a true theory that includes4 Q. Then for each 2 set5 S, 

there is a E formula that weakly represents S in I?. 

Proof: Let S be the extension of the E formula @. If n is in S, @([n]) is a consequence of Q, and 

so a consequence of r. If n @ S, @([n]) isn't true, and so it isn't a consequence of r.EI 

We can strengthen this corollary by employing a new notion: 

Definition. A theory is a-inconsistent iff, for some formula $(x), proves 

(3x)$(x), but it also proves -$([n]), for each n. 

Since an inconsistent theory proves every sentence, every inconsistent theory is a-inconsistent, 

but, as we shall see later, not every a-inconsistent theory is inconsistent. Every true theory is 0- 

consistent, but not every a-consistent theory is true. 

4 To say that I? includes Q, in standard usage, it's not literally required that Q be an 

element of r'. It's enough that Q is a consequence of r. The trouble is that, in standard 

usage, "theory" is ambiguous between a set of axioms and the set of consequences of the 

set of axioms. The ambiguous usage is thoroughly entrenched, so we have to live with it. 

5 As usual, what we say about sets goes for relations too. 
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Corollary. Let I? be an o-consistent theory that includes6 Q. Then for each x set S, 

there is a x formula that weakly represents S in I?. 

Proof: Let S be the extension of (3y)q(x,y), where q is bounded. The argument that, if n is in 

S, then I? t(3y)q([n],y), is the same as above. If n isn't in S, then, for each m, q([n],[m]) is 

false, and so -$([n],[m]) is a consequence of Q, and hence a consequence of I?. It follows by o- 

consistency that (3y)$([n],y) isn't a consequence of I?.H 

We cannot strengthen the corollary still further by replacing "a-consistent" by "consis- 

tent," for it is possible to find a consistent theory that includes Q in which not every x set is 

weakly representable. The proof proceeds by starting with a set K that is x but not A, and by 

enumerating all the formulas with one free variable. We build up our theory I? in stages, starting 

with Q, and at the nth stage adding a sentence to the theory that kills off the possibility that the 

nth formula weakly represents K, maintaining consistency all the while. I won't go into  detail^.^ 

One can, however, show that, if I? is a consistent, x set of sentences that implies Q, then 

every x set is weakly representable in I?. The proof requires machinery we haven't developed 

yet.* 

6 To say that I? includes Q, in standard usage, it's not literally required that Q be an 

element of I?. It's enough that Q is a consequence of I?. The trouble is that, in standard 

usage, "theory" is ambiguous between a set of axioms and the set of consequences of the 

set of axioms. The ambiguous usage is thoroughly entrenched, so we have to live with it. 

7 You can see the details in a very useful little book by Per Lindstrom entitled Aspects of 

Incompleteness (Springer Verlag Lecture Notes in Logic, vol. 10). 

8 Again, see Lindstrom's book. 
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Theorem (Rosser). For any A set S, there is a formula that strongly represents 

S in any consistent theory that includes Q. 

Proof: If S is A, then there are bounded formulas @(x,y) and $(x,y) such that (3y)@(x,y) 

weakly represents S in Q and (3y)$(x,y) weakly represents the complement of S. We want to 

put these formulas together to construct a single formula such that the formula weakly represents 

S in Q and its negation weakly represents the complement of S. If we were working with true 

arithmetic rather than Q, we could just take our formula to be (3y)@(x,y), taking advantage of 

the fact that (VX)(- (~~)@(X,~)  - (3y)$(x,y)) is true. However, we are working with Q, and 

(VX)(- (~~)@(X,~)  - (3y)$(x,y)), though true, might not be provable in Q. So we have to be 

more devious. 

The way our formula 8(x) is constructed is reminiscent of the way we proved the 

Reduction Theorem for effectively enumerable sets. There we had effectively enumerable sets A 

and B, and we wanted to find nonoverlapping effectively enumerable sets C c A and D c B with 

C u D = A u B. The idea was to simultaneously list A and B. If n first turns up in the list for A, 

put n into C, whereas if n first turns up in the list for B, put it in D; ties go to C. The formula 

8(x) that we're trying to produce describes an analogous construction in which, given n, we 

simultaneously try to construct a witness to (3y)@([n],y) and to construct a witness to 

(3y)$([n],y). If our first witness is a witness to (3y)@([n],y), make 8([n]) true, whereas if our 

first witness is a witness to (3y)$([n],y), make 8([n]) false; ties go to truth. 

The little parable I just told isn't part of the proof. The proof consists in writing down a 

formula and verifling that its works. The parable was intended to motivate the choice of 

formula. Here is the formula 8(x): 
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(3y)(@(x,y) A w z  < y)- $(x,y)). 

Let I? be a consistent theory that includes Q. We need to verify the following four 

statements: 

(a) If n is in S, then I? e([n]). 

(b) If n isn't in S, then I? 1-~([n]). 

(c) If n is in S, then I? $-~([n]). 

(d) If n isn't in S, then I? $~([n]).  

Proof of (a): In n is in S, then e([n]) is a true 2 sentence, provable in Q and hence in I?. 

Proof of (b): If n isn't in S, then, for some natural number m, $([n],[m]) is a true bounded 

sentence, and so a theorem of Q. Consequently, 

(1) (Vy)([mI< Y - (32 < y)$([nI,z)) 

is a consequence of Q. So are 

(2) (Vy)([mI< Y - -wz < Y)- $([nl,z)) 

and 

(3) (Vy)([mI < Y - -(@([nI,y) A (Vz < Y)- $([nl,z))). 

Because n isn't in S, for each k, @([n],[k]) is false. Consequently, for each k, -(@([n],[k]) 

A (VZ < @I)- $([n],z)) is true. Therefore, 

(4) (VY)(Y < [ml - -(@([nI,y) A w z  < Y)- $([nI,z))) 

is a true bounded sentence, and so a consequence of Q. Also, 

(5) -(@([nI,[ml) A w z  < Y)- $([nI,z)) 

is a true bounded sentence, and so a consequence of Q. (5) is equivalent to 

(6) (Vy)([mI = Y - -(@([nI,y) A (Vz < Y)- $([nl,z))). 
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(Ql 1) gives us this: 

(7) (Yy)([mI< Y V ([ml= Y V Y < [ml)) 

Combining (3), (4), (6), and (7), we see that 

(8) (Yy)-(@([nI,y) A w z  < Y)- *([nI,z)), 

which is equivalent to 

(9) -8([nl), 

is a the consequence of Q, and hence a consequence of I?. 

Proof of (e): If n is in S, then, by (a), I? t8([n]). It follows by consistency that r' $-~([n]). 

Proof of (d): If n isn't in S, then by (b), r' 1- 8([n]). It follows by consistency that r' $ 

8([nI).H 

Definition. A formula o(x,y)finctionally represents a total function f in  a 

theory I? iff, for each n, the sentence (Vy)o([n],y) - y = [f(n)]) is a conse- 

quence of I?. 

Notice that, if our theory I? (which includes Q) is consistent, any formula that function- 

ally represents f in  I? also strongly represents f in  I?. The converse doesn't hold, in general. If 8 

strongly represents f in  I?, then, for each m and n, 

(8([nl,[ml) - [ml = [f(n)l 

is a consequence of I?. So we can prove each instance of the generalization: 

(YY)(~([~],Y) - Y = [f(n-l), 

but there isn't any way to put the proofs of the infinitely many instances together to get a proof 

of the generalization. So, whereas Rosser's result gives us, for each A total function f, a formula 
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that strongly represents f, that formula does not, as a rule, also functionally represent f. However, 

we can find another formula that does functionally represents f, as we shall now see: 

Theorem (Tarski, Mostowski, and Robinson). For any x total function f, 

there is a x formula that functionally represents S in any theory that 

includes Q. 

Proof: Since any x total function is A, Rosser's result tells us that there is a x formula 0 (x,y) 

that strongly represents fin Q. Let o(x,y) be the following formula: 

(O(x,y) A (Vz < Y)- O(x,z)). 

The proof that o functionally represents fin Q (and hence in any theory that includes Q) is a lot 

like the last proof. Take any n. 

If k < f(n), Q 1- O([n],[k]), and hence Q 1- o([n],[k]). Also, Q 1- [k] = [f(n)], and so 

Q ~( ( J ( [~ I ,F I )  - [kl = [f(n)l). Since (VY)(Y < [f(n)l - ( (~( [n l ,~)  - Y = [f(n)l)) is provably (in Q) 

equivalent to the conjunction of all the sentences of the form (o([n],[k]) - [Ik] = [f(n)]) with k < 

f(n), we see that 

(10) (VY)(Y < [f(n)l - (o([nI,y) - Y = [f(n)l)) 

is a theorem of Q. 

Since (Vz < [f(m)]) - e([n],z) is provably (in Q) equivalent to the conjunction of all the 

sentences of the form - O([n],[k]), with k < f(n), and since, for each k < f(n), - O([n],[k]) is a 

consequence of Q, (Vz < [f(m)])- e([n],z) is a consequence of Q. O([n],[f(n]) is likewise a 

consequence of Q, so that Q implies o([n],[f(n)]), which is logically equivalent to this: 

(11) (VY)(Y = [f(n)l - (o([nI,y) - Y = [f(n)l))- 

Since Q implies O([n],[f(n)], it also implies 
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(12) (Yy)([f(n)l < Y - (32 < y)0([nI,z)). 

(12) is logically equivalent to this: 

(13) (Yy)([f(n) < Y - -W)- WnI,z)), 

which immediately implies this: 

(14) (Yy)([f(n) < Y - -(0([nI,y) A W)- 0([nI,y))), 

that is, 

(15) (Yy)([f(n)l < Y - - o([nI,y))- 

Also, because Q implies 

(16) - < [f(n)l, 

Q implies this: 

(17) (Yy)([f(n)l < Y - l Y = [f(n)l). 

(1 5) and (17) together imply this: 

(18) (Yy)([f(n)l < Y - (o([nI,y) - Y = [f(n)l))- 

(lo), (1 I), (1 8), and (Q11) together imply: 

(19) (Yy)(o([nI,y) - Y = [f(n)l).N 

Robinson's Arithmetic has no intrinsic interrest for us. It's technically usefbl as a means 

of proving some theorems, but it's not independently important. In particular, proofs in Q 

scarcely resemble our intuitive ways of thinking about the natural numbers. We now turn our 

attention to a much stronger theory, Peano Arithmetic, that does a very good job of reflecting the 

ways we reason when we prove things informally about the natural numbers. 


