
Why Study Computability? 

A decision procedure for a set S is an algorithm - a fully mechanical computation 

procedure - that correctly answers questions of the form "Is so-and-so in S?" A proofprocedure 

for S is the positive half of a decision procedure. If a is in S, then there is a "proof' that a is in S, 

and the proof can be found by diligent seaching; if a isn't in S, then there is no such proof. 

Moreover, the processes of searching for a proof and recognizing a proof when you find one can 

be carried out in a purely mechanical fashion. 

In Logic I, we learned a couple of decision procedures for the set of valid sentences of 

the sentential calculus, the method of truth tables and the search-for-counterexamples method. 

We also learned a system of rules that enable us to derive any valid sentence of the predicate 

calculus. These rules constitute a proof procedure for the set of valid sentences. We did not, 

however, learn a decision procedure. If we try to prove 4 and we don't succeed, there will be no 

stage at which we can be sure that the reason we haven't succeeded is that 4 isn't provable, 

rather than we haven't looked long enough. The explanation why we haven't found a decision 

procedure for the set of valid sentences of the predicate calculus shows more than merely that we 

haven't been clever enough to devise one. There is, in fact, no decision procedure there to be 

had. This was demonstrated by Alonzo Church and Alan Turing: 

Church-Turing Theorem. There is no decision procedure for the set of 

valid sentences of the predicate calculus. 

What a remarkable result! To point out that there is no known procedure for 

testing validity in the predicate calculus is no big deal; it just means that finding a test for 

validity is an unsolved problem. But the Church-Turing theorem tells us much more than 
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this. It tells us that no time, ever, even in the distant future, will anyone discover a 

decision procedure for the validity in the predicate calculus. 

The Church-Turing theorem is a result of an extensive investigation, carried out 

during the 1930s by Turing, Godel, Kleene, Church, and others, of the question, "When 

is there an algorithm for solving a particular mathematical problem?" That is, when is 

there a system of explicit rules, which can be followed in a perfectly mechanical way and 

which will always give a correct answer to a certain category of mathematical question? 

The investigation was quite fi-uitfbl. For one thing, the investigation preceded the 

development of the electronic computer and facilitated its development. Turing 

developed a highly simplified and schematic model of what we do when we calculate 

with pencil and paper, and much of the early work in developing digital computers was 

aimed at implementing Turing's model electronically. 

It is not surprising that these investigations have been of interest of 

mathematicians and computer scientists. For one thing, before these investigations, one 

had no way of showing an undecidable problem to be undecidable. Thus if one were 

working on a problem of the form "Find an algorithm for so-and-so" - and a great many 

important mathematical problems take this form - and if there were, in fact, no such 

algorithm, then one might spend one's entire career in a fbtile search for an algorithm 

that isn't there. This could still happen, even after the advent of the theory of 

computability, but it's made less likely by the advent of techniques that enable you to 

work on the problem fiom both ends. Try to find an algorithm, and if that doesn't work, 

try to prove that there is no such algorithm. 
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An example is Hilbert's tenth problem, the tenth problem on a famous list of the 

world's most prominent unsolved mathematical problems, promulgated by David Hilbert 

in 1900. The problem was to find when a polynomial (in several variables) with integer 

coefficients has an integer solution. It is clear that there is a proof procedure for the set of 

polynomials with integer coefficients and integer solutions. You just test possible 

solutions one by one by multiplying and adding. It is not so clear whether there is a 

method for identifling those problems that don't have integer solutions. Many bright 

people worked many hours on this problem, and they would be working on it still had not 

Yuri Matijasevic in 1970 applied the methods of computability theory (or recursion 

theory, as it's called) to prove that there is no such algorithm. 

Let me now give some reasons why recursion theory ought also to be of interest 

to philosophers. 

Recursion theory is concerned with problems that can be solved by a computing 

machine. What counts as a computing machine? It doesn't matter what they thing is made 

of. A computing machine could be made of TinkertoysB, of embroidery thread, or of 

animal flesh. What matters is how the thing is organized. The device has to make its way 

from inputs to outputs in a sequence of purely mechanical steps; an IBM PC that acts 

under demonic influences will not count as a computing machine. The philosophically 

interesting thesis is that we ourselves ought to be counted as computing machines. Our 

inputs are sensory stimuli and our outputs are behaviors. The chemical and electrical 

processes by which our behaviors are produced are simple natural processes not different 
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in kind from the processes that occur on a silicon chip. Thus any problem we can solve is 

going to be decidable.' 

The content of this observation is not entirely abstract. Computer models of the 

mind have become prominent in recent psychology and philosophy of mind. 

Recursion theory is concerned with problems that can be solved by following a 

rule or a system of rules. Linguistic conventions, in particular, are rules for the use of a 

language, and so human language is the sort of rule-governed behavior to which 

recursion theory applies. Thus, if, as seems likely, an English-speaking child learns a 

system of rules that enable her to tell which strings of English words are English 

sentences, then the set of English sentences has to be a decidable set. This observation 

puts nontrivial constraints upon what the grammar of a natural language can look like. 

As Wittgenstein never tired of pointing out, when we learn the meaning of a 

word, we learn how to use the word.2 That is, we learn a rule that governs the word's use. 

1 It appears likely that our stimuli don't uniquely determine our behaviors; instead, there 

are elements of chance involved. But this makes no difference, since it turns out that the 

same problems can be solved by nondeterministic computing machines as can be solved 

by deterministic machines. 

2 It may be that, when we learn the word "duck," we learn to associate the word this the 

universal canardity. But even if that's true as a matter of metaphysics, it has no value in 

explaining how we learned the word, for our parents didn't teach us the word by 

repeating the word "duck" while pointing to the universal. 
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So a theory that gives us the limitation on what we can accomplish by following a rule 

also gives us limitations on the structure of the meanings of words. 

In particular, when we are learning arithmetic, what we are learning, presumably, 

are the rules for the use of numerical language. The natural alternative, which is that the 

child learns to use "three" the way she learns to use "Mama" or "duck," by learning to 

recognize three when she sees it, seems preposterous. But if learning arithmetic really 

consists in learning rules of language, then, it would seem, we ought to be able to state 

what the rules are, then to say that a sentence is recognizable as a truth of arithmetic if 

and only if it is can be produces by following the rules. But, in fact, we cannot do this. A 

deep theorem of Kurt Godel, which we shall discuss presently, shows that, for any system 

of rules, either there si a false arithmetical sentence that is a consequence of the rules, or 

else there is a true arithmetical sentence that is not a consequence of the rules. Worse: for 

any system of rule we can specifl for generating truths of arithmetic, there will be an 

arithmetical sentence that isn't a consequence of the rules that we can recognize as true. 

Godel's theorem places important limits upon the power of the axiomatic method. 

Before Godel's theorem, it was generally supposed that hoe we acquired mathematical 

knowledge was by drawing out the consequences of mathematical axioms. The axioms 

themselves were traditionally regarded as self-evident truths; after the advent of non- 

Euclidean geometry, it became common to suppose that the mathematician's job was 

simply to develop the consequences of axiom systems, without concerning themselves 

with whether the axiom systems are true. Godel's theorem shows that that traditional 

account can't be all there is to the epistemology of mathematics. The precise details of 
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how we formulate the axioms doesn't matter. However we formulate the axioms of 

number theory, as long as we can see that they're all true, there will be W h e r  sentences 

that we can recognize as true even though they aren't derivable from the axioms. 

Godel's theorem takes on a particular urgency when we connect it to the question, 

"How do mathematical terms get their meanings?" It appears that the answer has to be 

something like, "The meanings of the terms are established by the mathematical theory." 

That can't be the whole answer, because we need to take account of the use of 

mathematical terms in such activities as counting and measuring, but these activities 

don't go very far toward pinning down the meanings of the terms. What emphatically we 

don't have for the names of numbers is an analogue for what we have for the names of 

dogs: our causal connection with the dog Fido helps to pin down the meaning of the 

name "Fido." In the absence of causal connections, there is precious little left, other than 

the theory, to pin down the meanings of the terms. Yet the theory can't pin down the 

meanings, since there are sentences that, as far as the theory is concerned might be true 

and might be false, even though it follows from the biconditionals 

r@ is true if and only if 4 

r@ is false if and only if -4 

that every sentence is either true or false. This discrepancy has driven some philosophers 

to mathematical skepticism. 

A close relative of Godel's result is a theorem of Tarski's to the effect that, if our 

commonsense understanding of the notion of truth is correct, then it will not be possible 

to develop a theory of truth for a language within the language itself. Instead, the theory 
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of truth for a language 9 must be developed within a metalanguage which is essentially 

richer than 9 in expressive power. The philosophical consequences of this result are 

staggering. It implies that we cannot give a theory of truth for English (or for any natural 

language) for we don't have any metalanguage richer than English in expressive power. 

Moreover, the result entails that it is not possible to obtain a unified science that 

comprehends nature, human language, and human thought as a unified whole, for the 

language we use when we talk about language lies outside the reach of linguistic inquiry. 

Another, quite different, reason why philosophers ought to be interested in 

recursion theory is this: since Plato, philosophers have been trying to give analyses, in 

which the meaning of a difficult or troublesome term is explained in terms of other terms 

which are simple, clearer, and better understood. For example, to fill in the blank in 

It is right for S to do A iff , 

where the blank is filled in by something from outside the circle of moral terms.3 The 

right sort of thing would be: 

It is right for S to do A iff, of the possible acts available to S, A is most 

conducive to the greatest happiness for the greatest number, 

provided that "happiness" is understood in such a way that it is not infused with moral value. 

The biconditional you get by filling in the blank needs to be a conceptual truth. If we give a 

3 If we explain the meaning of "right" in terms of other moral terms, we may have done 

something quite valuable and helpful, but we will not have done what has traditionally 

been regarded as an analysis. An analysis of "right" would explain the meaning of "right" 

to someone who doen't have any moral vocabulary at all. 
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characterization of the class of right acts whose correctness is merely accidental, or even if we 

give a characterization is a matter of physical law, we would not say that we have given an 

analysis of what it is for an act to be right. 

The program of trying to understand a difficult concept by presenting a conceptual 

analysis is a venerable part of our philosophical heritage, but it is a program which has scarcely 

ever succeeded. One such example is the analysis of decidability that we get from recursion 

theory. Recursion theory gives us a biconditional of the form 

There is an algorithm for testing membership in S if and only if 9 

where the blank is filled in with a statement form pure mathematics. Thus on the left there is a 

statement about procedures and capacities, and on the right there is a statement that has nothing 

to do with procedures and capacities, a statement you would be able to understand even if you 

were a member of a race of superbeings that could recognize mathematical truths by direct 

intuition and had no inkling what computations or algorithms are.4 Moreover, the biconditional, 

if it is true at all, is a conceptual truth. So we have a successfbl analysis. 

If we are interested in giving conceptual analyses, it is a good idea to look carehlly at the 

few examples we already have of successfbl analyses. One reason this is so is that it is usually a 

good strategy to emulate success. See what methods were employed to give our successful 

analysis of decidability in order to see whether these same methods can be applied to give 

analyses of other concepts. Even if this doesn't give us the analysis we seek, it may still give us 

some usefbl information. Understanding why the concept of rightness doesn't yield to the same 

4 According to Thomas Aquinas, that the way it is with angels. 
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analytical techniques that gave us a successful analysis of decidability will point out to us some 

of the obstacles that lie in the way of a successfbl analysis of the right. 

Incidentally, the only other example I know of a successful conceptual analysis (apart 

from trivialities like "Vixen are female foxes") is the E-6 analysis of the concepts of limit and 

continuity. 


