Homework #3: Reconstruction (due on 3/6)

1. Reconstruction and Condition A:

Consider the ambiguity of the sentence in (1), and the proposal that it is derived from two logical forms that are hinted at in (2)

- (1) How many books did John decide to read?
- a. How_n did John decide [t_n many books]₁ to read t₁ Paraphrase: What is the (maximal) number n, s.t. John decided that he would read that number of books?
 b. How_n did [t_n many books]₁ John decide to read t₁ Paraphrase: What is the (maximal) number n, s.t. there are n many books that John decided that he would read?

Is there a prediction that might follow from our discussion of Condition A and the way it is affected by A-bar movement? Try to come up with an example sentence that would be predicted to be bad under the logical form in (2)a, if Condition A applies at Logical Form.

1. Reconstruction and A movement:

Consider the following ambiguity

(3)	Every first year student didn't come to the party. a. Paraphrase #1: For every first year student, x, x didn't come to the party.
	$(\forall > \text{not})$
	b. Paraphrase #2: At least one first year student didn't come to the party.
	$(not > \forall)$
(4)	Every coin didn't land heads.
	a. Paraphrase #1: For every coin, x, x didn't land heads.
	$(\forall > \text{not})$
	b. Paraphrase #2: Not all coins landed heads. (i.e. at least one didn't)
	$(not > \forall)$

[The second interpretation is easy to see in the following dailogue: Q: How did this coin land? A: I don't know, but I can tell you that every coin didn't land heads (with a "rise" on *every* and a "fall" on *didn't*)]

Propose two logical forms for these sentences.

What might you conclude from the following?

- (5) Every first year student doesn't seem to his classmates to be likely to come to the party. $(\forall > not) (not > \forall)$
- (6) Every coin is expected not to land heads.

 $(\forall > \text{not}) * (\text{not} > \forall)$