Some other types of opacity

- (1) A case of counterfeeding in the environment: Japanese rendaku
 - Second element becomes voiced in certain types of compounds
 - From *ren* 'sequential' + *daku(on)* 'voiced'; examples from Ito & Mester (2003a)

/t/	kuma	'bear'	+	te	'hand'	\Rightarrow	kuma-de	'rake'
	umi	'sea'	+	tori	'bird'	\Rightarrow	umi-dori	'sea bird'
/k/	huta-	'two'	+	ko	'child'	\Rightarrow	huta-go	'twin'
	ori-	'fold'	+	kami	'paper'	\Rightarrow	ori-gami	'paper-folding'
	ao	'green'	+	kaeru	'frog'	\Rightarrow	ao-kaeru	'green frog'
/s/	ите	ʻplum'	+	su	'vinegar'	\Rightarrow	ume-zu	ʻplum vinegar'
	hana	'flower'	+	sono	'garden'	\Rightarrow	hana-zono	'flower garden'
/h/	hana	'flower'	+	hi	'fire'	\Rightarrow	hana-bi	'fireworks'
	ike-	'arrange'	+	hana	'flower'	\Rightarrow	ike-bana	'flower arranging'

Lyman's Law: at most one voiced obstruent per morpheme

- kaki 'persimmon' kagi 'key' gaki 'kid' *gagi (no such words)
- True of Yamato and Sino-Japanese vocabulary
- Not true of foreign borrowings (e.g., *boodobiru* 'vaudeville') or mimetic words (e.g., *zabu-zabu* 'splashing a lot')
- Blocks rendaku when second element already has a voiced element

/t/	kagi	'key'	+	taba	'bundle'	\Rightarrow	kagi-taba	'bunch of keys'
	mata	'crotch'	+	tabi	'travel'	\Rightarrow	mata-tabi	'wandering life of a gambler'
	ao	'green'	+	tokage	'lizard'	\Rightarrow	ao-takage	'green lizard'
/k/	ai	'together'	+	kagi	'key'	\Rightarrow	ai-kagi	'passkey'
	ao	'green'	+	kawazu	'frog'	\Rightarrow	ao-kawazu	'green frog'
/s/	naga-	'long'	+	sode	'sleeve'	\Rightarrow	naga-sode	'long-sleeved'
/h/	tori	'bird'	+	hada	'skin'	\Rightarrow	tori-hada	'goosebumps'

- (2) Another process: *g-weakening*:
 - Tokyo: non-initial $/g/ \rightarrow [\eta]$ variably, gradiently ([y] in some other dialects)

Initial		Non-initial	
gama	'toad'	kaga \sim kaŋa	'flower bud'
geta	'clogs'	kage \sim kaŋe	'shade'
goma	'sesame seeds'	$kago \sim kayo$	'basket'
gimu	'obligation'	kagi \sim kaŋi	'key'

• Creates alternations: /gai/ 'foreign'

Х	+	/d ₃ iN/ 'person'	\rightarrow	[gai d ₃ iN]	'foreigner'
/koku-/ 'country'	+	Х	\rightarrow	[koku gai] ~ [kokuŋ ai]	'abroad'

(3) Ito & Mester (2003b, building on much previous work): rendaku interacts with *g*-weakening

UR	ori + kami	saka-toge
rendaku	origami	—
g-weakening	oriŋami	sakatoŋe
SR	oriŋami	sakatoŋe

- Rendaku *feeds* g-weakening in the input (creates g's that can weaken)
- *g*-weakening *counterfeeds* rendaku in the environment (removes Lyman's Law violations, but too late)
- (4) Pieces of an OT analysis
 - Constraint demanding rendaku: I'll call it RENDAKU
 - Ito & Mester argue that there is a [+voi] morpheme; use REALIZEMORPH
 - Lyman's Law condition: *D...D
 - OCP effect, or constraint conjunction (*D² within the domain of the morpheme)
 - IDENT_{IO}[\pm voi], IDENT_{IO}[\pm nas]

Rendaku:				
	/hana-sono/	*DD	RENDAKU	ID[voi]
*DD	a. hana-sono		*!	
	🖙 b. hana-zono			*
Rendaku			1	1
	/naga-sode/	*DD	Rendaku	ID[voi]
$IDENT_{IO}[\pm voi]$	🖙 a. naga-sode		*	
	b. naga-zode	*!		*

• Exercise for the reader: eliminate the candidate [naga-zote] (devoice competing obstruent to allow rendaku to apply; this candidate currently wins)

g-weakening:													
	/gak	ci/		*[ŋ	*VgV	ID[nas]		/ka	gi/		*[ŋ	*VgV	ID[nas]
*[ŋ	¢\$	a.	gaki						a.	kagi		*!	
		b.	ŋaki	*!		*		6	b.	kaŋi			*
*VgV							_						
	/ŋak	ci/		*[ŋ	*VgV	ID[nas]		/kaŋ	i/		*[ŋ	*VgV	ID[nas]
$IDENT_{IO}[\pm nas]$	GF	a.	gaki			*	Γ		a.	kagi		*!	
		b.	ŋaki	*!				¢F	b.	kaŋi			

(5) Rendaku feeds g-weakening: no problem

/ori	-kan	ni/	*DD	*[ŋ	Rendaku	*VgV	Id _{IO} [voi]	$Id_{IO}[nas]$
	a.	ori-kami			*!			
	b.	ori-gami				*!	*	
¢\$	c.	ori-ŋami					*	*

(6) g-weakening counterfeeds rendaku in the environment: incorrect prediction

/ao·	-toka	ige/	*DD	*[ŋ	Rendaku	*VgV	$Id_{IO}[voi]$	Id _{IO} [nas]
	a.	ao-tokage			*!	*		
	b.	ao-dokage	*!			*!	*	
) Me	c.	ao-tokaŋe			*!			*
¢\$	d.	ao-dokaŋe					*	*

- Surface $[\eta]$ can't enforce Lyman's Law; predicts transparent feeding interaction
- The intuition: correct *ao-tokaye* acts as if the [ŋ] was actually a [g]
- (7) A sympathy analysis is possible
 - Sympathy candidate $\aleph_{\rm F} = [ao-tokage]$

- This candidate would be the winner if *g*-lenition did not apply (IDENT_{IO}[±nas] ranked on top; the selector constraint)
- The actual output *ao-tokage* is faithful to voicing of \aleph_F (sympathy constraint = BIDENT[voi])

/ao	-toka	ige/	₿Id[voi]	*DD	*[ŋ	Rendaku	*VgV	Id _{IO} [voi]	∗Id _{IO} [nas]
쯂	a.	ao-tokage				*	*!		✓
	b.	ao-dokage	*!	*			*	*	1
¢\$	c.	ao-tokaŋe				*			*
	d.	ao-dokaŋe	*!					*	*

- The sympathy constraint &Id[voi] "deactivates" RENDAKU (complementary violations), but crucially, only when there is the potential for *g*-weakening (that is, when the selector constraint *Id[nas] actually selects a subset of the candidates)
- (8) Problems with this analysis
 - Ito & Mester (2003b): it only works if we assume /g/ (ROTB issue). Compare:

/ao-to	okaŋe	e/	⇔Id[voi]	*DD	*[ŋ	Rendaku	*VgV	$Id_{IO}[voi]$	★Id _{IO} [nas]
	a.	ao-tokage				*	*!		*
	b.	ao-dokage	*!	*			*	*	*
	c.	ao-tokaŋe				*			\checkmark
- SF - SB	d.	ao-dokaŋe	*!					*	\checkmark

- Selector ★IDENT[nas] can't help if UR has nasal /ŋ/
- Perhaps some other selector? We need to favor $\aleph_{\rm F}$ with [g], so has to be some constraint favoring /g/ \to [ŋ]
- Yet no faithfulness constraint could favor candidates (a,b) over (c,d); would need to admit possibility of \mathcal{M} selector (like $*\eta$)
- More important: seems to miss a fundamental difference between rendaku & g-weakening

Rendaku	g-weakening
Categorical	Gradient
Consistency within lexical items	Variable across utterances
Numerous lexical exceptions	Applies across the board
Sensitive to morphological structure	Sensitive only to initial/non-initial

- Rendaku has hallmarks of a lexical process, g-weakening looks post-lexical
- (9) Ito & Mester's solution: adopt a stratal model of OT (Kiparsky 1998, and various other works)
 - Lexical stratum: rendaku is active, g-weakening is not

/ori	-kan	ni/	*DD	*ŋ	Rendaku	*VgV	Id _{IO} [voi]	Id _{IO} [nas]
	a.	ori-kami			*!			
¢,	b.	ori-gami				*	*	
	c.	ori-ŋami		*!			*	*
/ao-tokage/		∥ *D…1	*DD *ŋ		J *VgV	$/ Id_{IO}[voi]$	ld _{IO} [nas]	
¢\$	a.	ao-tokage			*	*		
	b.	ao-dokage	*!			*	*	
	c.	ao-tokaŋe		*	!			*
	d.	ao-dokaŋe		*	!		*	*
/ao-tokaŋe/		*DI) *ı	j Rendaki	J *VgV	$I Id_{IO}[voi]$	Id _{IO} [nas]	
¢.	a.	ao-tokage			*	*		*
	b.	ao-dokage	*!			*	*	*
	c.	ao-tokaŋe		*	!			
	d.	ao-dokaŋe		*	!		*	

- Crucial: *ŋ must include context-free (unlike *[ŋ above), if we want to obey ROTB

- Postlexical stratum: reverse holds
 - $*VgV \gg *\eta$, Ident[voi] \gg Rendaku
 - Ito & Mester assume that RENDAKU continues to "see" violations; this is not crucial (we can assume that postlexical stratum is no longer sensitive to compound structure)

orig	ami		*DD	*VgV	Id _{IO} [voi]	*ŋ	Rendaku	Id _{IO} [nas]
	a.	ori-kami			*!			
¢Þ	b.	ori-gami		*!				
	c.	ori-ŋami				*		*
aotokage		*DD	*VgV	Id _{IO} [voi]	*ŋ	RENDAKU	Id _{IO} [nas]	
	a.	aotokage		*!				
	b.	aodokage	*!	*				
¢\$	c.	aotokaŋe				*		*
	d.	aodokaŋe			*!	*		*

- (10) What does this analysis buy us?
 - ROTB issue solved (if we accept that context-free *ŋ is involved)
 - Possibly explains why g-weakening is not sensitive to lexical structure
 - May also explain why lexical exceptions to rendaku but not *g*-weakening: output of Lexical stratum is phonological string only, no marking for exception features
 - No obvious explanation for gradientness or variability, without further assumptions
- (11) A rather different approach, based on the observation that g-weakening is variable

Kawahara (2002 BA Thesis): faithfulness among surface variants

- The form *ao-tokage* is not just a virtual sympathy candidate, but an actual surface form in spoken Japanese
- @IDENT[voi] could actually be IDENT to the more careful/conservative variant
- Grammar of careful/conservative Japanese is like Lexical grammar in (??)
- Colloquial forms use something like "postlexical" grammar, but IDENT_{IO} is actually IDENT_{OO}— Base Ident to output of careful speech grammar (recursive evaluation; Benua 1997)
- (12) An interesting and novel prediction of this approach
 - What will happen when Tokyo speakers stop hearing conservative VgV forms like [tokage]?
 - Various possibilities:
 - Rendaku will come to apply transparently. since these words have now been relexicalized to sonorants
 - Older speakers who still remember [tokage] will continue to say compounds like [ao-tokaŋe], creating apparent exceptions to rendaku which confuse learners and prevent them from learning rendaku correctly (maybe fricatives only, or not at all?)
- (13) Some suggestive evidence: (from Dutch and German)

Midd	Middle Dutch		
sg.	pl.		
le:və	le:vən		
le:fs	le:ft		
le:ft	le:vən		
	Midd 		

• Voicing alternations: final devoicing and voicing assimilation

A subsequent development in some dialects: apocope of final [ə] (morphologically restricted)

• 1sg ending $\rightarrow \emptyset$

A pattern found in a few areas of Germany and the Netherlands:

Bavarian dia	lects	-	Dutch dialects		
sg.	pl.		sg.	pl.	
le:b \sim le:bə	le:bən	-	$le:\!v \sim le:\!v_{\! \ni}$	le:vən	
le:pst	le:pt		le:fs	le:ft	
le:pt	leːbən		le:ft	le:vən	

- Apocope counterfeeds final devoicing (creates surface exceptions)
- Stated differently, these forms are immune to final devoicing, because it's as if the final schwa is still there (*ich leb*')
- (14) So what happens when the [a] forms get too rare to enforce this?

Middle	Modern Dutch		
sg.	pl.	sg.	pl.
le:bə	le:bən	le:f	le:vən
le:pst	le:pt	le:ft	le:vən
le:pt	leːbən	le:ft	le:vən

- Goeman (1999 diss, cited in van Oostendorp 2005): Dutch dialects with opaque interaction (*ik leev*) occur only in dialects that are on the boundary between apocope and non-apocope regions (-₂ vs. Ø)—e.g., Twente
- Previously, this pattern was more common (presumably when schwas were more pervasive)
- Parallel in German: some dialects have devoicing, while in others, opacity helped lead to the demise of final devoicing (Southern Bavarian and Yiddish)
- (15) Summary
 - Many cases of opacity—in particular, cases of opacity in the environment that are not amenable to solutions discussed last week—may be analyzable as faithfulness among surface variants
 - This points to another possible virtue of opacity: in addition to keeping surface forms more similar to URs for recognition/retrieval, it also helps keep neighboring dialects more similar to each other
 - The "derivations recapitulate history" effect \rightarrow speakers remember the recent past, or communicate with their grandparents and neighbors (who speak more conservatively)
 - When such forms are no longer available, is that the end of opacity?

References

Ito & Mester (2003a) Japanese Morphophonemics: Markedness and Word Structure. MIT Press.

Ito & Mester (2003b) Lexical and postlexical phonology in Optimality Theory: Evidence from Japanese.

Kawahara (2002) Similarity among Variants: Output-Variant Correspondence. BA thesis, International Christian University.