22 Feb, 2005

Reduplicant size and placement

(1) "Canonical" reduplication patterns

Ilokano (Hayes and Abad 1989)

(Malayo-Polynesian; Philippines; 8M spkrs)

Sg.	Pl.	Gloss
púsa	puspúsa	'cat'
káldiŋ	<u>kal</u> káldiŋ	'goat'
<i>j</i> yanitor	<u> </u> jyanjyánitor	'janitor'
ró?ot	ro:ró?ot	'leaves'

Manam (Lichtenberk 1983, Buckley 1998)

(Malayo-Polynesian; New Guinea; 7000 spkrs in 1998)

Unredup.		Redup.	
salága	'be long'	salagalága	'long-sg.'
móita	'knife'	moita <u>íta</u>	'cone shell'
malabóŋ	'flying fox'	malabombóŋ	'flying fox'
?ulan-	'desire'	?ulanláŋ	'desirable'

- (2) Marantz (1982):
 - RED = an affix (prefix or suffix)
 - Shape of RED defined by a CV template
 - Material associated from the same edge ("Marantz's generalization"):
 - "In the unmarked case, reduplicating prefixes associate with their melodies from left to right, reduplicating suffixes from right to left." (p. 447, Condition D.i.)
- (3) The OT equivalent: (sort of)
 - ALIGN-L/R(Red,PrWd): RED is a prefix/suffix
 - RED = X (templatic constraint)
 - LOCALITY(by seg/σ): RED is not separated from its corresponding string in the base by any segments/syllables
 - MAX: copy as much as possible (from base? from input?)
 - BASE-CONTIG: no skipping when copying from the base

(Unique predictions from treating these as rankable constraints)

- (4) Goals today: examine a variety of reduplication patterns, seeing what additional elaborations are needed to capture three basic aspects of reduplication:
 - 1. Where do you copy from
 - 2. How much do you take
 - 3. Where do you put it

(We'll take these questions out of order: (1) and (3), then (2))

Where do you copy from, and where do you put it?

- (5) Marantz (1982): copying from L/R edges
 - p. 447: begin at L and associate $L \rightarrow R$, or begin at R and associate $R \rightarrow L$
- (6) McCarthy & Prince (1995): ANCHOR-L/R(Base, RED)
 - The X edge of the base corresponds to the X edge of the reduplicant
 - How is this not quite the same from $L \rightarrow R$ or $R \rightarrow L$ association? What are some unique predictions of an ANCHOR-based approach?
 - Hint: both constraints freely rerankable w/Contiguity

/RE	/RED-badupi/		ALIGN-L(RED)	Align-R(RED)	LOCALITY(σ)	$\text{RED} = \breve{\sigma}$
¢\$	a.	ba-badupi		***		
	b.	du-badupi		***	*	
	c.	pi-badupi		***	*	
	d.	ba-ba-dupi	*	**		
	e.	ba-du-dupi	*	**		
	f.	badu-du-pi	**	*		
¢9	g.	badupi-pi	***			
	h.	badupi-du	***		*	
	i.	badupi-ba	***		*	

(7) Edge-in association as alignment + locality

Factorial typology: edge-in candidates harmonically bound nonlocal and infixing candidates

- What rankings are needed to get Ilokano and Manam?
- (8) Infixing reduplication in Timugon Murut (Prentice 1981, McCarthy & Prince 1993, McCarthy 2000) (Malayo-Polynesian; Malaysia; around 8,000 spkrs)

	Unredup.		Redup.	
a.	bulud	'hill'	<u>bu</u> bulud	'ridge'
b.	limo	'five'	<u>li</u> limo	'about five'
c.	ulampoy		u <u>la</u> lampoy	(no gloss)
d.	abalan	'bathes'	a <u>ba</u> balan	'often bathes'
e.	ompodon	'flatter'	ompopodon	'always flatter'

/RE	D-ul	ampoy/	*V.V, Onset/DEP/etc.	$\text{RED} = \breve{\sigma}$	ALIGN-L(RED)
	a.	u-ulampoy	*!		
¢\$	b.	u-la-lampoy			*
	c.	ul-ul-ampoy		*!	*
	d.	ula-la-mpoy			**!
	e.	ulam-po-poy			**!

- How is this similar to other cases of infixation that you are familiar with (e.g., Tagalog -*um*-infixation) How is it different?
- Prosodic circumscription (McCarthy & Prince 1990, 1993)
 - Skipping initial onsetless syllable is awkward in an operational framework
- ANCHOR-L is no help here (it is violated by [ulalampoy], since [l] doesn't correspond to [u])
- ALIGN-L is doing the work of keeping the reduplicant to the left (just as with infixation of segmentally specified affixes)

(9) Another infixation case: Samoan (Broselow & McCarthy 1983) (Malayo-Polynesian; Samoa; 400,000 spkrs 1999)

	Unredup.	Redup.	Gloss
a.	táa	<u>ta</u> táa	'strike'
b.	túu	<u>tu</u> túu	'stand'
c.	nófo	<u>no</u> nófo	'sit'
d.	móe	<u>mo</u> móe	'sleep'
e.	alófa	a <u>lo</u> lófa	'love'
f.	saváli	sa <u>va</u> váli	'walk'
g.	malíu	ma <u>li</u> líu	'die'
ĥ.	galúe	ga <u>lu</u> lúe	'work'
i	fanáu	fa <u>na</u> náu	'be born'

(10) Marantz (1982), fn. 15: Points out existence of infixing reduplication, suggests that a similar copying mechanism could handle them

а	lofa	а	lofa	lofa
	$ \longrightarrow$			
V + (CV + CVCV	V-	+ CV	+ CVCV

- Does not provide an explicit mechanism to position reduplicant as an infix
- Direction of copying also unexplained: why is [lofa] copied and not [a]? (Broselow & Mc-Carthy 1983)
 - Are infixes suffixed to what comes before them, or prefixed to what comes after?
- Prosodic circumscription: target final (stressed) foot
- Possible constraints:
 - ALIGN(RED,R, σ ,L) ("ALIGN-to- σ ")
 - Alignment to the foot containing main stress is not limited to reduplication; Ulwa possessive marking is aligned immediately after the main stress foot (McCarthy & Prince 1993)
 - ANCHOR-L(σ , RED)
- (11) Alignment + locality is not enough to capture Samoan:

/RED-saváli/		ALIGN-to- $\hat{\sigma}$	RED= $\breve{\sigma}$	Align-L	
	a.	<u>sa</u> -saváli	*!		
¢\$	b.	sa- <u>sa</u> -váli			*
¢.	c.	sa- <u>va</u> -váli			*

- ALIGN-to- σ captures locus of reduplication, but can't get the direction (same problem as the Marantz footnote)
- Nelson (2003 Rutgers diss.): a positional faithfulness effect (MAX('σ))

/RE	D-sa	váli/	MAX(' σ)	Align-to- σ	RED= $\breve{\sigma}$	Align-L
	a.	<u>sa</u> -saváli		*!		
	b.	sa- <u>sa</u> -váli	*!			*
¢\$	c.	sa- <u>va</u> -váli				*

- (12) Other examples of copying from strong positions
 - a. Yareba (Weimer & Weimer 1970, Riggle 2003) (Trans-New Guinea; Papua New Guinea; 750 spkrs 1981)

	Sg.	Pl.	Gloss
a.	boroy-a	borob-a	'reveal it!'
b.	fomuy-a	fomuf-a	'break it!'
c.	doroy-a	dorod-a	'go through the hole!'

- Stem-final [y] in sg. is epenthetic (to avoid hiatus; a strictly CV lg.)
- Plural marked by copy of stem-initial consonant
- ALIGN-R(RED), but MAX(Initial C)
- We'll talk about the placement of the reduplicant shortly (point here is to discuss source of RED material)
- b. Levantine Arabic intensive/pejorative reduplication (Broselow & McCarthy 1983) (Semitic; Lebanon, Syria, Palestine, Jordan)

	Simple vb.	Derived vb.	Gloss (of derived)
a.	faraħ	farfaħ	'rejoiced'
b.	baħa∫	baħba∫	'sought'
c.	barad	barbard	'shaved unevenly'
d.	daħal	daħdal	'rolled gradually'
e.	baʕas	baʕbas	'gave the finger to repeatedly'

• Stress is penultimate in these words

• Initial consonant is copied to create derived CCCC roots

c. Quileute (Andrade 1933, McCarthy and Broselow 1983) (Chimakuan; Washington State; 10 spkrs in 1977)

	Unredup.		Redup.	
a.	qa:le?	'he failed'	qaqle?	(frequentative)
b.	tsiko	'he put it on'	tsitsko	(frequentative)
c.	k ^w e:tsa?	'he is hungry'	k ^w e:k ^w tsa?	'several are hungry'
d.	tuko:yo?	'snow'	tutko:yo?	'snow here and there'

- Stress in Quileute is penultimate (quantity insensitive; Gordon 2002)
- What distinguishes the segment that gets copied here?
- (13) Generalizations:
 - Common to copy from left edge and prefix result (Ilokano, Tagalog)
 - Variant: V-initial words infix RED to obey ONSET (Sanskrit, Timugon Murut) = "copy as close to left edge as possible"
 - Less common, but well-motivated cases of copying from and attaching to "strong" positions elsewhere in the word
 - Main stress/stressed foot (Samoan; also Manam)
 - Relatively fewer suffixing cases
 - A striking contrast to segmentally specified affixation, which is predominantly suffixing
- (14) A hypothesis: (Nelson 2003 Rutgers diss.)
 - Reduplication targets left edges or strong positions (stressed syllables), but never right edges
 - In other words, all reduplication is prefixing or stress-seeking

Purported functional motivation:

- Prefixes get in the way of lexical access for the root; suffixes allow the more important root information to sit in a prime location for lexical access
- In reduplication, you can already get going on lexical access because the reduplicant contains material from the stem
 - Caveat: this is more true in some cases than in others; in many TETU cases, the reduplicant contains only minimal information from the root (e.g., Skt desiderative, and more extreme cases, like Yoruba)
 - This functional motivation might explain why segmentally specified affixes tend to be suffixes, but why would reduplicants *prefer* to be prefixes, if they are at best neutral w.r.t. lexical access?
- (15) One the face of it, many right-side reduplication cases do seem amenable to reinterpretation as stressed-syl reduplication

E.g., Manam in (1) above (but now treating first copy as RED)

/RE	D-m	alabóŋ/	RED=FT	ALIGN-to-' σ (L)	$MAX(\sigma)$	Align-R
	a.	<u>mala</u> malabóŋ		*!		***
¢\$	b.	mala <u>bom</u> bóŋ				*
	c.	malabombóŋ		*!	(vacuous)	

Some trouble with light final syllables, though:

/RE	D-sa	lága/	RED=FT	Align-to-' σ (L)	$MAX(\sigma)$	Align-R
	a.	<u>sala</u> salága		*!		***
¢\$	b.	sa <u>sala</u> lága				**
¢\$	c.	salagalága				**

- Maybe a LOCALITY violation? RED-Contig (no intrusion)?
- Maybe a relative prominence discrepancy: [sa(sàla)(lága)] vs. [sa(làga)(lága)]
- ANCHOR-L(RED, '*σ*): would force RED to start with [l]
- The point: many options before resorting to right-edge copying

	Unredup.	Redup.	Gloss
a.	gle'∫ka	gleˈʃka-ʃka	'be spotted'
b.	waˈ∫te	waˈ∫te-∫te	'be good'
c.	lo'wã	lo'wã-wã	'sing'
d.	't∫ ^h epe	$\widehat{\mathfrak{t}}\widehat{\mathfrak{f}}^{h}ep-\widehat{\mathfrak{t}}\widehat{\mathfrak{f}}^{h}epe$ (* $\widehat{\mathfrak{t}}\widehat{\mathfrak{f}}^{h}epe-pe$)	'be fat'
e.	'kaye	kax-'kaye (*kaye-ye)	'do, make'
f.	'k ^h ate	k ^h al-'k ^h ate (*k ^h ate-te)	'be hot'
g.	na'p ^h ope	na-p ^h o-'p ^h ope (*nap ^h ope-pe)	'pop'
h.	't∫ik'ala	t͡ʃik-ˈt͡ʃik'ala	'small'

(16) A possibly instructive case: Dakota/Lakhota (Boas & Deloria 1941, Shaw 1980, Marantz 1982)

- Nelson (2002, 2003): the fact that RED moves around under different stress patterns proves that it is not targeting final syllables *per se*, but rather stressed syllables
- There are, however, some cases with penultimate stress but final reduplication

	Unredup.	Redup.	Gloss
i.	'hãske	hãska-ska	'tall'
j.	'∫akpe	∫a'kpe-kpe	'be six in number'
k.	'jamni	'jamni-mni	'be three in number'
1.	zaptã	zaptã-ptã	'be five in number'
m.	∫a'kowĩ	∫a'kowĩ-wĩ	'be seven in number'
n.	wi'kt∫emna	wi'kt∫emna-mna	'be ten in number'

- The details are too complex to go into here; the point is that some languages do have patterns that look like final-syl/foot reduplication, and the jury is perhaps still out on whether they can all be explained away
- The potential payoff: an account for a striking typological imbalance
- (17) Another troubling case: Chamorro

	Adj.	Intensive	Gloss
a.	dánkolo	dánkolo-lo	'big'
b.	buníta	buníta-ta	'pretty'
c.	ñálang	ñála-la-ng	'hungry'
d.	métgot	métgo-go-t	'strong'

- Nelson's speculation: another possible prominency mismatch case: *bùn-buníta
- (18) Summary so far:
 - Found evidence that RED can copy from a variety of places in the word
 - Initial onset, initial syllable, stressed syllable, final syl?
 - Have focused thus far on cases in which locality is obeyed
 - Not always external affixation, but always adjacent to source material
- (19) Back to Marantz's generalization:
 - By default, RED copies from left when prefixed, and from right when suffixed
 - (Based on typological observation that same-side reduplication is overwhelmingly favored)

What captures this generalization in Marantz's original proposal? What captures it in the constraint set we've been using?

- (20) Some famous (and not so famous) exceptions to Marantz' generalization
 - a. Madurese (Stevens 1968) (Malayo-Polynesian; Indonesia; 13.7M spkrs)

	-	
Sg.	Pl.	Gloss
buws?-sn	wx?-buwx?-xn	'fruit'
k ^h uwγ	wx-k ^h uwx	'cave'
mõŵã	ŵã-mõŵã	'face'
nẽỹãt	ỹãt-nẽỹãt	'intentions'

b. Chukchi (Krause 1980)

(Chukotko-Kamchatkan; Russia; 10,000 spkrs 1997)

Absolutely Pl.	Absolutive Sg.	Gloss
jil?e-t	jil?e-jil	'gopher'
nute-t	nute-nut	'earth'
tala-t	tala-tal	'meat'

c. Koryak (Bogoras 1969, discussed by Riggle 2003) (Chukotko-Kamchatkan; Russia; 3,500 spkrs 1997)

Stem	Absolut. sg.	Gloss
mītqa	mītqa-mīt	ʻoil'
qanga	qanga-qan	'fire'
kilka	kilka-kil	'shell-fish'

d. Creek (Martin and Mauldin 2000) (Muskogean; Oklahoma (historically Alabama/Florida); 6000 spkrs 1990)

	Sg.	Pl.	Gloss
a.	cá:k-i:	ca: <u>ca</u> k-í:	'precious'
b.	cámp-i:	cam <u>ca</u> p-í:	'sweet'
c.	cákh-i:	cak <u>ca</u> h-í:	'sticking in'
d.	fáck-i:	fac <u>fa</u> k-í:	'full' (container)
e.	hasátk-i:	hasat <u>ha</u> k-í:	'clean'
f.	likácw-i:	likac <u>li</u> w-í:	'nasty, dirty'
g.	lowáck-i:	lowaclok-í:	'soft'
ĥ.	sófk-i:	sof <u>so</u> k-í:	'deep'
i.	takacw-i:	takac <u>ta</u> w-í:	'hard'

(Also the Arabic and Yareba cases from above)

- (21) Madurese: a MAX-' σ effect?
 - Note that I'm not totally sure Madurese has final stress. This is a conjecture (and an illustration of how opposite-side patterns could be derived with these constraints)

/RED-garadus/		Align-L	Max-' σ	LOCALITY(σ)	
	a.	gar-garadus		*!	
¢5	b.	dus-garadus			*
	c.	gara-dus-dus	*!*		

• Another possibility, which actually seems more plausible, is that this is part of a more general truncation process in Madurese, of disyllables to just their final syllable

Base	Trunc.	Gloss
duwa?	wa?	'two'
uriŋ	riŋ	'person'

- (22) Other non-local cases also show combination of MAX(somewhere) and ALIGN(somewhere else)
 - Creek: copy initial CV, place before final C
 - MAX(initial σ), ALIGN-to-' σ (or ALIGN-R) with infixation to satisfy syl structure (*[lowacklí:], [lowaclokí:] is better)
 - Levantine Arabic: copy initial C, place after first syl
 - MAX(initial *σ*) or MAX(initial C) (landing site may be last resort: *[babrad], *[barabd], but what about [bardab]?)
 - Yareba: copy initial C, place after root
 - MAX(initial σ) or MAX(initial C), looks liks ALIGN-R
- (23) Yet another infixation case: Temiar (Benjamin 1976, McCarthy 1982, Broselow & McCarthy 1983/4)

(Mon-Khmer; spoken in Malaysia; 11,500 spkrs in 1981)

	Perfective	Continuative	Gloss
Active	səlág	seglóg	'lie down, sleep, marry'
Causative	serlóg	səreglág	ne down, sieep, marry

- Syllables before main stress show vowel reduction: [ə] in open syllables, [ɛ] in closed syllables
- Pattern described as mirror image of Levantine Arabic: final C copied, placed before final syllable
- MAX-stressed rime, ALIGN-to-'σ? (together with a constraint that bans creating an extra "full" syllable by copying the vowel)
- (24) A similar case: Rebi West Tarangan (Gouskova 2004)

(Malayo-Polynesian; Indonesia; 6500 spkrs)

	Unredup.	Redup.	Gloss
tapúran	tarpúran	'middle'	
binúk	biknúk	'ankle'	

(The details are more complex; point is just to show there's other cases of copying the C that comes immediately after the stressed V)

- (25) Trying to explain away other cases as non-cases
 - Chukchi [jil?e-jil], [nute-nut]: full reduplication with apocope
 - (Not so clear this works for Koryak)
- (26) Summary
 - Reduplication typology is richer than simply prefixation/suffixation with edge-in association
 - The full McCarthy & Prince (1995) model is perhaps overly powerful, though
 - May predict patterns that don't occur
 - Certainly doesn't predict statistical asymmetries (like prefixing preference, and the tendency for edge-in association)
 - Promising (but difficult) approach: try to live with a very restricted set of constraints
 - Placement constraints: alignment to prominent positions
 - Copying constraints: locality forces you to take what's handy, MAX(strong positions) forces you to take what's prominent

How much do you copy?

- (27) Marantz (1982): affixation of CV skeletal template
 - Reminder: what is inadequate about this approach?
 - See examples in (1) if you need a hint
- (28) Template constraints
 - RED = $\check{\sigma}$, RED = $\bar{\sigma}$, RED = σ , RED = Ft, etc.
- (29) A danger of using templates: back-copying the template
 - Template, $M\mbox{Ax-BR}\gg M\mbox{Ax-IO}$: better to delete base than leave unreduplicated material

/RED-badupi/		$\text{RED} = \breve{\sigma}$	MAX-BR	MAX-IO	
	a.	badupi-badupi	*!		
	b.	ba-badupi		*!***	
¢\$F	c.	ba-ba			****

- (30) A possible response: avoid template constraints, and derive template shape from other constraints
 - RED = $\breve{\sigma}$:
 - *CODA, *V:, *STRUC- σ (or something) \gg MAX-BR
 - Don't have codas or long vowels, and don't have extra syllables-favors copying just a CV
 - Requires also a REALIZEMORPH constraint to make sure that at least one syllable is copied
 - RED = $\bar{\sigma}$:
 - *Struc- σ (or something), MAX-BR \gg *CodA, *V:
 - Still prefers copying just one syl, but copies as much as possible
 - Languages with multiple templates need multiple copies of *F*-BR

Generalized Template Theory (GTT): the attempt to make templatic effects fall out by interaction of regular phonological principles

- In OT: markedness constraints, and TETU effects
- (31) A nifty triumph of GTT (and problem for template constraints): variable sized reduplicants

Pima (Riggle 2003): shows variability between single C and CV reduplication (Uto-Aztecan; Arizona & Mexico; 12,000 spkrs 1990 (incl. both Pima & Tohono O'odham))

a. C-copying reduplication

	Sg.	Pl.	Gloss
a.	má.vit	mám.vit	'lion'
b.	nák.∫iI	nánk.∫iI	'scorpion'
c.	sí.puk	sís.puk	'cardinal'
d.	kós.vuI	kóks.vuI	'cocoon'
e.	t∫í.mait	t͡ʃit͡ʃ.mait̪	'cake'
f.	vá.Jin	váp.Iin	'barrel'
g.	tlo.gi	tIoI.gi	'truck'
h.	kIa.vo	klal.vo	'nail'

b. CV-copying reduplication

1.2	0 1			
	Sg.	Pl.		Gloss
a.	hó.dai	ho.ho.dai	*hoh.dai	'rock'
b.	há.voI	ha.ha.voI	*hah.voI	'lima bean'
c.	?ú.pu.Jik	?u.?u.pu.Jik	*?u?.pu.Jik	'wart'
d.	ր ú.mat ∫	րu.րu.mat∫	*րuր.mat∫	'liver'
e.	gogs	go.gogs	*goggs	'dog'
f.	bi∫p	bi.bi∫p	*bib∫p	'horse collar'
g.	gev.ho	ge.gev.ho	*gegv.ho	'mountain lion'
h.	vat∫.lo	va.vat∫.Jo	*vapt∫Io	'lizard'
i.	namks	na.namks	*nanmks	'joint'
j.	Jan.d͡ʒi.ki	Ja.Jan.d͡ʒi.ki	*IaInd͡ʒi.ki	'lentil'
k.	pIan.dʒa.kud	pJa.Jan.d͡ʒa.kud	*pIaInd ₃ akud	'iron'

(32) Relevant constraints for Pima

- *BADCODA: various constraints against possible codas (*h], *?], *n], etc.)
- *BADONSET: various constraints against illegal onsets (*[mm, etc.)
- MAX(initial onset)
- $ALIGN-L(root) \gg ALIGN-L(RED)$ (both want to be initial, but root wins)
- O-CONTIGUITY (no intrusion) (dominated)
- A size-restricting constraint (no extra syllables, $*\sigma$)

(This is not precisely the way Riggle formulates them, but they will do the trick for these forms)

(33) Different outcomes depending on candidate codas

/RE	D-m	avit/	*BADCODA, **BADONS	$Max(C_1)$	ALIGN(Rt)-L	Align(RED)-L)	*σ
	a.	ma <u>ma</u> vit				**	*!**
	b.	<u>ma</u> mavit			*!*		***
	c.	m <u>m</u> avit	*!			*	**
¢\$	d.	ma <u>m</u> vit				**	**
	e.	mav <u>m</u> it				***	**

/RED-gevho/		vho/	*BADCODA, **BADONS	$Max(C_1)$	Align(Rt)-L	ALIGN(RED)-L)	*σ
¢\$	a.	gegevho				**	***
	b.	gegevho			*!*		***
	c.	ggevho	*!			*	**
	d.	gegvho	*!			**	**
	e.	gevgho	*!			***	**
	f.	gevhgo	*!			****	**
	g.	gevhog				***!**	**

- MAX-C₁ ensures that it's the 1st C that reduplicates
- High-ranked Align(Rt)-L, onset constraints prevent reduplicant from being a prefix or part of complex onset
- Align(RED)-L keeps RED from wandering too far into the word
- Size restrictor keeps it a single C when possible, CV when needed to avoid bad cluster

What constraint ranking is needed to ensure RED = CV, and not C with epenthetic V?

- (34) A note on the size restriction
 - Doesn't need to be generic σ —it could also be a constraint demanding that the singular and plural have the same number of syllables (see also Gouskova 2004)
 - Crucially, something must be evaluated gradiently, though (even if an extra σ is needed, this doesn't license full copying)
- (35) What Pima shows:
 - Size of reduplicant can vary depending on segmental makeup of root
 - RED = "As little as you can get away with"
 - Can this be stated using templatic constraints?
 - Support for the idea that size of RED is not a goal, but an effect