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BONDING 

1. 	 What are the quantum numbers used to describe the wavefunction of an electron in a central 
potential ? 

2. 	 Summarize the conceptual steps that led us to the solutions of the Schrödinger equation for 
an electron in a central potential. 

3. 	 Sketch the radial part and the angular part of one of the 3p wavefunctions for the hydrogen 
atom, and describe the nodal surfaces (i.e. where it goes to zero). 

4. 	 We want to understand if a hydrogen atom and a proton are stable together (i.e. they bind) as 
a charged molecular ion. Describe the attractive and repulsive interactions at work, and write 
down the Hamiltonian Ĥ  for this problem (use atomic units). What will determine the stability 
of this system ? 

5. 	 Determine the ground state wavefunction for the electron in this molecular ion. Use a trial 
wavefunction ψ trial = c1 ψ 1 ,  + c2 ψ 1 ,  , where ψ s A is a 1s-like hydrogen wavefunctions A s B 1 ,

centered on one nucleus, ψ s B  is a 1s-like hydrogen wavefunction centered on the other 1 ,

Ĥ ψ s A  = ψ s B  Ĥ ψ s B  = 1 (atomic units),nucleus. Assume that ψ s A1 ,  1 ,  1 ,  1 ,  

Ĥ ψ s B  = ψ s B  Ĥ ψ s A  = −1  (atomic units), and that ψ s A and ψ s B are1 ,  ψ s A  1 ,  1 ,  1 ,  1 , 1 ,

orthogonal and normalized to one (i.e. ψ s A ψ s B  = δ A B  ).1 ,  1 ,  ,  

6. 	 If the wavefunction for an electron in a central potential has a principal quantum number n=4 
and angular momentum quantum number l=2, what will be the possible values for the 
magnetic quantum number m ? 

7. 	 How many nodes will characterize the radial wavefunction for the above electron ? 

8. 	 The energy needed to break apart a Li2 dimer is larger than the energy needed to break a Be2 
dimer – explain why (remember, Li is the third atom in the periodic table, and Be is the fourth 
one). 

9. 	 What is the ground state energy for an electron in a hydrogen atom ? Suppose that we apply 
a magnetic field to such atom, but we do not allow the wavefunction to change. What will be 
the new ground state energy ? (The Hamiltonian in a strong magnetic field along the z axis 

has an added term 
µ B B ( L̂ + 2Ŝ ) , where 

µ B B  is just a constant and L̂  and Ŝ are thez	 z z z z z =	 =
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operators for the z-component of the angular momentum and for the z-projection of the 
electron spin. 

10. Describe the different hybridized orbitals that carbon can have in a molecule, and which 
geometry they enforce for the bonds around the carbon atom. 

 

 

THERMODYNAMICS 

1. Flory-Huggins Theory.  We introduced a simple lattice model for polymer solutions in 
lectures 24 and 25.  The Flory-Huggins model for polymer solutions is a close relative of the 
regular solution model of small-molecule binary solutions, and the free energy of mixing per 
lattice site in the Flory-Huggins model looks somewhat like the expression for the regular 
solution: 

∆G mix

M
= χkTφPφS + kT φP lnφP + φS lnφS[ ] 

…where χ is the Flory-Huggins interaction parameter and φs and φp are the volume fractions of 
solvent and polymer, respectively.  

a. We showed earlier that the critical temperature in the regular solution model is Tcrit = 
Ω/2R.  We obtained this result by determining the value of T when the second 
derivative of the free energy of mixing with respect to composition is equal to zero, at 

the composition XB = 0.5 (
∂ 2∆G mix

∂XB
2 X B = 0.5 = 0 ).   In this case we knew the miscibility 

gap would first appear at XB = 0.5 because the enthalpy and entropy of mixing 
functions in the regular solution are symmetric about XB = 0.5.  However, these 
functions are not symmetric about φp = 0.5 in the Flory-Huggins model.  (This is why 
the miscibility gap on the polymer solution phase diagram is ‘canted’ strongly toward 
the φp = 0 vertical axis for long-chain polymers.) The Flory-Huggins model thus has 
both a critical temperature and a critical volume fraction (illustrated below).  



Regular solution of small molecules:	 Solution of polymer in a small molecule solvent: 

T α 

α1 

α1 + α2 

α2 

T 

P 

S 
(solvent

PÕ 
(polymer-rich solution) 

Tcrit 

Tcrit

PÕ + S 

X rich solution)

B,crit = 0.5 XB φP,crit φP


 Typically, instead of calculating a critical temperature for polymer solutions, one instead 
calculates χcrit, the critical value of the interaction parameter at the onset of the miscibility 
gap (which, as you can see by looking at the definition of χ, is inversely proportional to 
the critical temperature).  In order to determine the critical volume fraction, we use an 
additional condition on the free energy: The critical point is located at the temperature 
and composition where the following two criteria are met: 

∂2(∆G mix /M)
= 02∂φP 

∂3(∆G mix /M)
= 03∂φP 

(We use here the free energy change on mixing per lattice site).  Use these equations 
to determine the critical volume fraction φP,crit and χcrit for the Flory-Huggins model, and 
show how they depend on N, the number of segments in the polymer chains. 

b. 	 We showed in class how the entropy change on mixing a polymer with a small-
molecule solvent, ∆S mix , is obtained.  Use this information to derive an expression for 
the entropy change on mixing a polymer A with chains each comprised of NA 
segments with a second polymer B, which has chains comprised of NB segments. 
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2. 	 The ideal solution as a lattice model. We can derive the free energy of mixing for ideal 
solutions using a lattice model similar to the Flory-Huggins theory- but simpler.  Suppose 
components A and B of the solution both occupy one lattice site each (and are the same 
size). Following the conceptual procedure we used in class (determining the entropy S from 
the number of configurations for the system W), answer the following questions: 

a. 	 What is the entropy of the unmixed system of pure A molecules + pure B molecules? 

b. 	 What is the entropy of the homogeneously mixed system of A + B? 

c. 	 Using these two results, what is the molar entropy change on mixing for this model 
system? Compare your answer to the ideal solution entropy of mixing we gave earlier 
in class. 

3. 	 Practice with the partition function.  In class, we gave a number of useful relationships 
that allow you to directly determine thermodynamic quantities from the partition function.  An 
example is the expression for the internal energy: 

U =< E >= −
∂ lnQ 

= kT 2 ∂ lnQ 

∂β ∂T 

Show that this expression is equivalent to the ensemble average of the internal energy: 

W 

U =< E >= ∑ Ei pi 

i=1 

4. 	 Practice with the Boltzmann distribution. Consider an imaginary crystal where a 
collection of 3 atoms vibrate as simple 1D harmonic oscillators, and each atoms has access 
only to the first 4 energy levels (the ground state and the first 3 excited states).  The 
energies of the 4 states are 75k, 225k, 375k, and 525k from the ground state to the higher 
energy states (where k is the Boltzmann constant).  The atoms are identical and 
distinguishable. 

a. 	 What is the probability of finding one atom of the system in each possible energy 
level at T = 200K? 

b. 	 Compute the probability of observing the system with a total energy of 225k. 

c. 	 Compute the probability of observing the system with a total energy of 375k. 
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d. 	 Explain why it is more probable to find the system with an energy greater than the 
ground state energy (all atoms in the ground state energy level), despite the fact that 
the probabilities of finding one atom of the system in an excited state (part a) 
decrease with increasing energy. 
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