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Individual Exercise I4-1 
rKreyszig Mathematica 
© Computer Guide: problem 6.14, page 78 

Individual Exercise I4-2 
rKreyszig Mathematica 
© Computer Guide: problem 6.16, page 78 

Individual Exercise I4-3 
rKreyszig Mathematica 
© Computer Guide: problem 7.12, page 87 

Individual Exercise I4-4 
rKreyszig Mathematica 
© Computer Guide: problem 8.10, page 96 

Individual Exercise I4-5 
rKreyszig Mathematica 
© Computer Guide: problem 8.22, page 96 

Group Exercise G4-1 
The shape of the catenary 

x + B 
y(x) = A cosh 

A 

is very important. The catenary is the shape of a flexible chain at equilibrium and the rotation of 
the catenary around y = 0 creates a surface of revolution called the catenoid. 

In the absence of gravity, a soap film suspended between two rings with radii R1 and R2, axes 
lying along y = 0, and separated by distance L has a catenoid shape. 

Consider a soap film suspended between two identical concentric rings of radius R and separated 
by distance L. Let the soap film have surface tension γ. Surface tension has units energy/area. 

1. Find a parametric representation of the catenoid. 

2. The mean curvuture of a surface is the sum of two curvatures. These two curvatures are 
obtained by slicing the surface with two orthogonal planes—creating two curves—and then 
using the formula for curvature for a curve. One of the curvatures is simply 1/y(x); the 
second can be obtained by using the result in Kreyszig page 443. Calculate the total mean 
curvature κ(x) of the catenary and plot it. 

3. Write a function that calculates the constants A and B given R and L. What are the 
conditions that there is one solution, two solutions, no solutions? 

4. Write a function that calculates the total surface energy, E(R, L), of a soap film. 

The equation for the area of a surface of revolution is: 

x2 dy 
A[y(x)] = 2π y 1 + ( )2dx 

dx x1 

Plot the normalized energy surface(s) E(R, L)/(γRL). 
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Group Exercise G4-2 
The diffusion equation 

∂c 
= D∇2 c 

∂t 

describes how the concentration field c(~r, t) changes with time proportional to spatial second 
derivatives. A solution to the diffusion equation requires that initial conditions and boundary 
conditions be specified. Boundary conditions specify how c(~r, t) behaves at particular points 
in space for all times. Initial conditions specify how c(~r, t) behaves throughout all space at a 
particular time. 

For some boundary conditions (BCs) and initial conditions (ICs), it is possible to write a 
solution to the diffusion equation in terms of an integral. For solutions in the infinite domain, the 
following BCs and ICs are a pair of such conditions, 

c(x = ±∞, y = ±∞, z = ±∞, t) = 0 (1) 

a c c0 if|x| ≤ 
2 

and |y| ≤ b and |z| ≤ 
2 2 (2) c(x, y, z, t = 0) = 

0 otherwise 

where a, b, and c are finite (i.e., the initial conditions have uniform concentration, c0, inside a 
rectangular box and zero outside. 

1. Show that 
a b c 
2 2 2 c0dζdηdχ −

(x−χ)2+(y−η)2+(z−ζ)2 

c(x, y, z, t) = e (3) 4Dt 

−a −b −c (4πDt)3/2 

2 2 2 

always satisfies the diffusion equation (independent of BCs and ICs). 

2. Show that Eq. 3 always satisfies the boundary conditions, independent of the ICs. 

3. Find the closed form of c(x, y, z, t) that satisfies both Eq. 1 and 2. 

4. Show by a graphical means that c(x, y, z, t) plausibly approaches the ICs (Eq. 2) as t → 0. 

5. Show that the total number of atoms is conserved for c(x, y, z, t). 

Group Exercise G4-3 

The potential energy of two small magnetic dipoles µ~1 and µ~2 located at points r~1 and r~2 are 
given by 

µo µ~1 · µ~2 3[µ~1 · (r~1 − r~2)][µ~2 · (r~1 − r~2)]
U(r~1, ~r2) = − 

4π |r~1 − r~2|3 |r~1 − r~2|5 

Suppose the first magnetic dipole is located at the origin and points towards the z-direction. 

1. Illustrate the potential energy of the two-dipole system as a function of the second magnet’s 
position r~2 if it is also directed towards the z-direction. 
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2. Illustrate the potential energy of the two-dipole system if the second magnet is fixed at the 
location r~2 but is rotated by θ about the normal to the plane containing both magnets and 
the z-axis. 

3. Illustrate the potential energy of the two-dipole system as a function both the second mag-
net’s position r~2 and its rotation θ about the normal to the plane containing both magnets 
and the z-axis. 

4. Suppose the second magnet is moved along a trajectory, (x, y, z) = r0(cos(2πt), sin(2πt), 0), 
and the magnet is always directed towards the trajectory’s tangent. Calculate and illustrate 
the potential energy and the rate of work done on the system as a function of time. 

5. Extra Credit: Suppose the two magnets are immersed in a viscous fluid and the first 
magnet is fixed as above. The rate of rotation is given by (approximately) 

dθ τ 
= 

dt 4πηR2L 

where R and L are the radius and length of the cylindrical magnet and η is the viscosity in 
the fluid medium. τ is the torque applied to the magnet. 

The velocity is given by (very approximately) 

d~r F 
= 

dt 6πηR 

where ~F is the force applied to the magnet. 

Graphically illustrate the position of the rod as a function of time, if the rod is initially at 
rest at t = 0 and located at ~r = r0 for the following initial inclination angles: 

θ = (0◦ , 1◦ , 45◦ , 89◦ , 90◦ , 91◦ , 135◦ , 179◦ , 180◦ , 181◦ , 225◦ , 269◦ , 270◦ , 271◦ , 315◦ , 359◦) 
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