3.044 MATERIALS PROCESSING

LECTURE 1

What is Materials Processing?

- A way to make materials useful: desired chemistry, shape, microstructure

- A way to give materials the desired properties

What Processes are included in copper production?

grinding \rightarrow colloid / suspension \rightarrow refining / reducing \rightarrow casting \rightarrow electrolysis \rightarrow melting \rightarrow casting \rightarrow rolling (hot) \rightarrow drawing

What thermodynamic variables do we have to work with?

Т	P (or σ)	C (composition)
heat	beat (move matter)	mix
heat transfer	solid mechanics	chemical reaction
	fluid mechanics	phase transformation
		diffusion

Topics Covered in this Class

Part I: Heat transfer Part II: Fluid flow Part III: Combine all 3

Heat Conduction: Heat flows down the temperature gradient

Date: February 8th, 2012.

LECTURE 1

Fourier's Law:
$$\bar{q} = -k\overline{\nabla T}$$
, $\bar{q} \to \text{heat flux } \left[\frac{J}{m^2s} = \frac{W}{m^s}\right]$
 $-k \to \text{thermal conductivity } \left[\frac{W}{mK}\right]$
 $\overline{\nabla T} \to \text{ temperature gradient } \left[\frac{K}{m}\right]$

Compare:

Fourier's LawFick's 1st Law
$$\bar{q} = -k\overline{\nabla T}$$
 $\bar{J} = -D\overline{\nabla c}$

Why does heat behave this way?

Energy minimization \Rightarrow Entropy maximization

Heat Conduction Equation:

First think in 1-D

Heat balance in a small element:

$$\underbrace{\operatorname{heat in}}_{A \cdot q_{\operatorname{in}}} - \underbrace{\operatorname{heat out}}_{A \cdot q_{\operatorname{out}}} \underbrace{\left(+ \operatorname{heat generation}\right)}_{\operatorname{chemical reaction, resistance}} = \underbrace{\operatorname{heat accumulation}}_{V \cdot \frac{\partial H}{\partial T}}$$
$$A q_{\operatorname{in}} - A q_{\operatorname{out}} = V \frac{\partial H}{\partial T}$$

$$q_{\rm in} - q_{\rm out} = \Delta x \frac{\partial H}{\partial T}$$

$$q|_x - q|_{x+\Delta x} = \Delta x \frac{\partial H}{\partial T}$$

$$-k \frac{\partial T}{\partial x}|_x - \frac{\partial T}{\partial x}|_{x+\Delta x} = \Delta x \frac{\partial H}{\partial T}$$

$$\frac{\partial H}{\partial T} = \frac{k}{\Delta x} (\frac{\partial T}{\partial x}|_{x+\Delta x} - \frac{\partial T}{\partial x}|_x)$$

$$= \frac{k}{\Delta x} \Delta (\frac{\partial T}{\partial x})$$

$$= k \frac{\partial (\frac{\partial T}{\partial x})}{\partial x}$$

$$\boxed{\frac{\partial H}{\partial T} = k \frac{\partial^2 T}{\partial x^2}}$$

How does H relate to T?

$$\Delta H = \Delta T c_p \rho$$
$$\frac{\partial H}{\partial t} = \rho c_p \frac{\partial T}{\partial t}$$
$$k \frac{\partial^2 T}{\partial x^2} = \rho c_p \frac{\partial T}{\partial t}$$
$$\frac{k}{\rho c_p} \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$
$$\alpha \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$
$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

where c_p is heat capacity and ρ is density

 α is the **Thermal Diffusivity**

$$\alpha = \frac{k \left[\frac{W}{mK}\right]}{\rho \left[\frac{kg K}{J}\right] c_p \left[\frac{m^3}{kg}\right]}$$
$$\alpha = \frac{k}{\rho c_p} \left[\frac{m^2}{s}\right]$$

LECTURE 1

The values of k, c_p and ρ for any material can be looked up in tables and do not need to be experimentally determined. Therefore α is a **materials property**.

Compare:

Heat Conduction EquationFick's 2nd Law $\frac{\partial T}{\partial t} = \underbrace{\alpha}_{\downarrow} \frac{\partial^2 T}{\partial x^2}$ $\frac{\partial c}{\partial t} = \underbrace{D}_{\downarrow} \frac{\partial^2 c}{\partial x^2}$ thermal diffusivity $\left[\frac{m^2}{s}\right]$ diffusivity $\left[\frac{m^2}{s}\right]$

Topic for Future Discussion:

In 3-D ...

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot k \nabla T$$
$$\boxed{\frac{\partial T}{\partial t} = \alpha \nabla^2 T}$$

** assuming **k** is constant with respect to the derivative

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.