
3.044 MATERIALS PROCESSING 

LECTURE 2 

Recap: Conduction Equation 

3D: ρ cp 
∂T = V · k VT = k V2 T
∂t
 

∂T ∂ k ∂T = k ∂T 2
 
1D: ρ cp = 

∂t ∂x ∂x ∂t2 

in our derivation last time we stated... 

∂H 
Δx = qin − qout 

    
∂T 

= q|x − q|x+Δx      
 
  
  

∂T
 ∂T
 −k
 + k
=

∂x
 ∂x
 x+Δxx 

∂T
 −
 
∂xx+Δx 

∂T
 
∂x


    
     
  
 


= k

x

Δ∂T 
∂x = k 

Δx 
∂2T 

= k assumes k independent of x, T 
∂t2 

Is it possible that the value of k is different at x and x +Δx? 
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LECTURE 2 

Taking k out of the derivative assumes that k   = f(x) and k = f(T ), 
because T = f(x). 

Is this assumption valid? 
For most materials for most small working T ranges (< factor of 2) is usually 
negligible. 

Simplify the conduction equation: 

What we have done so far: 

∂T 
ρ cp = V · k VT 

∂t 
∂T 

= α V2 T 
∂t 

3D to 1D 

∂T ∂2T 
= α 

∂t ∂x2 

Assumption 1: Steady State 

unchanging temperature with time (T profile), 
Steady State Conduction: 

heat is flowing, but at constant rates everywhere 

∂T 
= V2T = 0 

∂t 

V2T = 0 Laplace Equation 

1-D Sheet and Bar 

∂2T 
= 0 

∂x2 
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Solve 

∂2T 
= 0 

∂x2 

∂ 
(
∂

∂

 
T 
)

== 0 
x ∂x 

∂T 
∂ 

(
== 00 

∂x 
∂T

 )
 
= A 

∂x 
dT = A dx 

T = Ax + B
 

1. @ x = 0, T = T1 

T = A(0) + B = T1 

∴ B = T1 

2. @ x = L, T = T2 

T = A(L) + T1 = T2 

T  
∴ 1

A = 2 − T

L 

Plug In ( 
T2 − T

T 2
= 

)
+ (T1)

L 

 
x 

Rearrange 

T − T1 x 
= 

T2 − T1 L 

Define Dimensionless Variables:
 

Apply Boundary Conditions
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Dimensionless Position (0 - 1)

how far you are from T1

Θ =

︷ ︸︸ ︷
T − T1

T2 − T1︸ ︷︷ Fractional Position

full temp. range

Dimensionless Position (0 - 1)

︸
x

χ =
L

Fractional Temperature

Solution: Θ = χ

constant

q = −
︷︸︸︷ ∂T
k

slop

︸︷︷︸∂x

e = constant

∴ q is a constant

Heat flow out of a pipe

Steady State:

∇2 T = 0

1

r

∂ ∂
r

∂r

(
T

∂r

)
+

1

r2

∂2 T

∂ θ2
+
∂2 T

∂ Z2
= 0

1 ∂
r

∂r

(
T

∂r

)
= 0
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Solve 

d 
dr � 
d 

r 
∂T 
∂r 

r 
∂T 
∂r 

= 0 

= 
� 

0 

r 
dT 
dr� 
dT 

= A 

= 
� 

A 
dr 

r 

T = A ln r + B 

Boundary Conditions 

1. @ r = R1, T = T1 

T1 = A ln R1 + B 

2. @ r = R2, T = T2 

T2 = A ln R2 + B 

Solve for A 

T1 − A ln R1 = T2 − A ln R2 

T1 − T2 = A ln R1 − A ln R2 

R1
T1 − T2 = A ln 

R2 

T1 − T2
A = 

ln R1 
R2 

Solve for B 

T1 = A ln R1 + B 

T1 − T2
T1 = ln R1 + B 

ln R1 
R2 

T1 − T2
B = T1 − ln R1 

ln R1 
R2 

( )
( )

( )
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Plug In 

T = A ln r + B 

T1 − T2 T1 − T2
T = ln r + T1 − ln R1 

ln R1 ln R1 
R2 R2 ( ) 

ln r 
T − T1 R1 

Θ = = ( ) 
T2 − T1 R2ln 

R1 

∂T 
q = −k Flux is not constant everywhere 

∂r 
= constant Total heat flow is constant everywhere  

r 

Composite Wall
 

q · ︸︷︷︸A
2πr



        

        

7 3.044 MATERIALS PROCESSING 

Steady State 1D 

∂2T 
= 0 in material A and B 

∂x2 

Boundary Conditions 

@ x = LA, T = T2 

@ x = LA, qin = qout 

Solve 

∂T ∂T 
kA = kB

∂x − ∂x +LA LA 

ΔTA ΔTB
kA = kB because slope is const. 

LA LB 

kA kB
(T1 − T2) = (T2 − T3)

LA LB 

⇒ Solve for T2, the unknown T 

How is this useful to engineers? 

LAΔTA kA = 
LBΔTB kB 

L 
ΔT ∝ 

K 
L 

= Thermal Resistivity 
K 

Say we are making a furnace out of steel 

L .01m 
= = 0.0003 ΔT 10x less 

k 30 W 
steel mK 

L .01m 
k mullite 

= 
3 W 
mK 

= 0.003 ΔT 10x more 

Read As: 

1. Mullite has 10x the temperature drop of steel 

2. Mullite conducts slowly compared to steel 

3. Steel is a faster conductor 

∣∣∣∣
−

=

∣∣∣∣
+

∣∣∣∣∣∣∣∣
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