#### 3.044 MATERIALS PROCESSING

#### LECTURE 19

# At $T < T_m$ is it fluid flow?

### Generalized Flow Law:



$$\tau = \mu \dot{\gamma}^m$$
 at  $m=1$  Newtonian 
$$\underbrace{\text{at } m < 1}_{\text{usually for solids}} \text{Non-Newtonian}$$

# Homogeneous vs. Inhomogeneous Area:



Date: April 30th, 2012.

2 LECTURE 19

Force Balance:  $i \leftrightarrow h$ 

$$\begin{split} \mathrm{d}\varepsilon_{i}\,A_{0,i}^{\frac{1}{m}}\exp\left(-\frac{\varepsilon_{i}}{m}\right) &= \mathrm{d}\varepsilon_{h}\,A_{0,h}^{\frac{1}{m}}\exp\left(-\frac{\varepsilon_{h}}{m}\right) \\ \int_{0}^{\infty}A_{0,i}^{\frac{1}{m}}\exp\left(-\frac{\varepsilon_{i}}{m}\right)\,\mathrm{d}\varepsilon_{i} &= \int_{0}^{\varepsilon_{\mathrm{fracture}}}A_{0,h}^{\frac{1}{m}}\exp\left(-\frac{\varepsilon_{h}}{m}\right)\,\mathrm{d}\varepsilon_{h} \\ \hline \varepsilon_{\mathrm{fracture}} &= -m\,\ln\left(1-\left(\frac{A_{0,i}}{A_{0,h}}\right)^{\frac{1}{m}}\right) \end{split}$$

 $\cdot$  where m is a material property: strain rate sensitivity

· where 
$$\left(\frac{A_{0,i}}{A_{0,h}}\right)^{\frac{1}{m}}$$
 is the size of inhomogeneity  $\Rightarrow$  if = 1 no roughness, no perturbation

 $\Rightarrow$  if < 1 (0.99) there is 1% area fluctuation



- · Newtonian Flow is stable: resists necking, voiding, etc.
- $\cdot$  Non-Newtonian flow is unstable
  - $\Rightarrow$  Shape forming in net tension must strive for <u>Newtonian</u> conditions (m < 0.5)

### **Bottle Production**

- · glass blowing  $\sim 1500$
- $\cdot$  plastic / polymers  $\sim 1940\text{-}1960$
- · bottles  $\sim 1980$
- $\cdot$  monolithic bottle  $\sim 2000$
- · superplastic forming  $\sim$  1990, metals  $\sim$  2000, now: ceramics

# Deformation Mechanism Map

power law creep

elastic diffusional Newtonian

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.