3.044 MATERIALS PROCESSING

LECTURE 20

Non-Newtonian Rheology

Newtonian Flow $(m \rightarrow 1)$ is desirable for flow stability against necking and voiding/cavitation

So far we have talked about net tension. However, many processing operations are in **net compression**:

extrusion rolling continuous

- injection molding
 forging
 batch
- forging

What about flow stability?

 \cdot more forgiving, less concerned about *m* in compression

m > 0.5 tension

m > 0.2 compression

 \Rightarrow faster processing is possible

Date: May 7th, 2012.

LECTURE 20

But we can't completely ignore m, there are some instabilities:

- \cdot barrelling (but it doesn't really matter)
- \cdot recrystallization
- \cdot cracks
- · voids open on directions of tension

How to process high T_m materials?

e.g. Refractory metals (W, Ta, Mo), $T_m = 3000 - 4000^{\circ}$ C, ceramics Al₂O₃

- Casting: too hot
 - \cdot hard to melt
 - \cdot what material do you use as a mold?
 - \rightarrow must with stand the heat and not react
 - \rightarrow containerless process, powder

Viscous shape forming: need a solid block of material to begin with

Powder Processing and Consolidation: volume reducing and forging

- \cdot Spray atomization and other containerless processes
 - \rightarrow mostly for metals (few ceramics)
- \cdot Wet chemical processing
 - \rightarrow e.g. Bayer process to make alumina
 - \rightarrow clean powders, distributed sizes

 $\mathbf{2}$

Mechanics of powder compaction are complex but well modeled:

Driving Force

$$P = P_{\text{applied}} + \underbrace{\frac{2\gamma}{r}}_{\substack{\text{capillary}\\\text{pressure}}} - \underbrace{P_i}_{\substack{\text{internally trapped}\\\text{gas pressure}}}$$

Sintering: $P_{\text{app}} \rightarrow 0$, if sintering in a vacuum $P_i = 0$

Pressing: $P_{\text{app}} \neq 0$

- \cdot uniaxial \Rightarrow fast, but very limited in shapes
- $\begin{array}{l} \cdot \text{ isostatic, HIP (hot isostatic pressing)} \Rightarrow \text{very good for closing small pores} \\ \Rightarrow \text{expensive, limited in shape} \end{array}$

Uses of Powder Production

- (1) ceramics processing
- (2) powder metallurgy
- (3) thermoset polymers
- (4) pharmaceuticals

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.