3.044 MATERIALS PROCESSING

LECTURE 22

Slip Casting

· high ζ potential \Rightarrow well separated particles in suspension \Rightarrow uniform packing when settled \Rightarrow sinters to a regular structure with uniform grains

Date: May 14th, 2012.

LECTURE 22

· low ζ potential \Rightarrow particles agglomerate in suspension \Rightarrow aggregates settle \Rightarrow larger voids, irregular structure in sintered body

· **settling** \Rightarrow lower velocity settling \Rightarrow spend more time going over the "repulsive hill" \Rightarrow less flocculation, more uniform settling

 \cdot slip casting \Rightarrow highter velocity settling \Rightarrow spend less time going over the "repulsive hill" and enter the flocculation minimum \Rightarrow more flocculation, less uniform settling

Add Macromolecules

 \Rightarrow adsorbed macromolecules add entropic repulsion effects

Vacuum/Vapor Deposition Processes

 \cdot semiconductor devices, integrated circuits, MEMS, etc.

 \cdot coatings for decoration (furniture, sports equipment, faucetry) or abrasion resistance (cutting/machining, tooling, blades)

Two main classes of processes

PVD	CVD
physical vapor deposition	chemical vapor deposition
vacuum process (low pressure)	vapor process (high pressure)
solid or liquid source	gas source
no chemical reaction, just adsorption	chemical reactions occur
geometry dominated	fluid flow and diffusion dominated

PVD

1. sputtering

2. e-beam

Ø 0

3. evaporation

4. pulsed laser deposition

5. MBE - molecular beam epitaxy

6. plasma enhanced deposition

PVD Energy Diagram:

no chemical reaction: the deposition rate is as fast as atoms are supplied

- \Rightarrow geometry dominated, source limited
- $\Rightarrow s \propto t \propto \text{supplied flux}, J \; \frac{mol}{m^2s}$ $\Rightarrow \frac{ds}{dt} = J \cdot V_m, \text{ where } V_m \text{ is molar volume, geometry factor}$

e.g. Evaporation

$$J = \frac{P_e - P}{\sqrt{2\pi M w R T}}$$

where P_e is equilibrium vapor pressure, P is pressure ≈ 0 (vacuum), and Mw is molecular weight

Next time: CVD

3.044 Materials Processing Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.