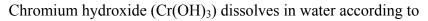
3.091 OCW Scholar

Self-Assessment Aqueous Solutions

Supplemental Exam Problems for Study

Problem #1

(a) Identify the conjugate acid-base pairs in each equilibrium by drawing a line connecting each acid with its conjugate base, and identify the acid of each acid/base pair:


(i)
$$CH_3CO_2H(aq) + NH_3(aq) \rightleftharpoons CH_3CO_2^-(aq) + NH_4^+(aq)$$

(ii)
$$SbF_5(aq) + 2 HF(aq) \rightleftharpoons H_2F^+(aq) + SbF_6^-(aq)$$

- (b) A 1.11 M solution of fluoroacetic acid, FCH₂CO₂H, is 5% dissociated in water.
 - (i) Calculate the value of the pK_a of FCH₂CO₂H.

(ii) Calculate the value of the pH of the solution.

Problem #2

$$Cr(OH)_3 = Cr^{3+}(aq) + 3 OH^{-}(aq)$$
 $K_{sp} = 6.31 \times 10^{-31} \text{ at } 25^{\circ}C$

Calculate the solubility of chromium hydroxide in 3.091 nM (3.091 \times 10⁻⁹ M) NaOH(aq). Express your answer in moles of Cr(OH)₃ per liter of solution.

Problem #3

Comment on the solubility of iodine (I₂) in each of these *liquids*: (1) carbon tetrachloride (CCl₄); (2) hydrogen fluoride (HF). State whether at room temperature you expect I₂ to be *highly soluble* or *almost insoluble*, and explain why.

(1)
$$I_2$$
 in $CCl_4(\ell)$

(2) I_2 in $HF(\ell)$

Problem #4

(a) The water dissociation equilibrium constant, K_w , expresses the relationship between hydronium (H_3O^+) and hydroxyl (OH^-) concentrations by the expression

$$K_{\rm w} = [{\rm H_3O}^+][{\rm OH}^-]$$

Owing to the presence of dissolved salts the value of pK_w for seawater is 13.776 (not 14.00 as it is for pure water), where pK_w is defined as $-\log_{10}K_w$. Calculate the concentration of hydroxyl ions (OH⁻) in seawater at a pH value of 7.00. Express your answer in moles OH⁻ per liter of solution (M).

(b) Would seawater at a pH value of 7.00 be classified acidic, basic, or neutral? Explain.

(c) Give an example of a dissolved salt that would cause the shift in the value of pK_w for seawater to 13.776 from the commonly accepted value of 14.00 which is valid for pure water. Justify your choice of salt.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.