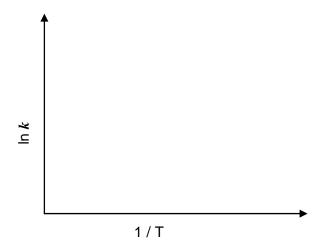
3.091 OCW Scholar

Self-Asessment Reactions and Kinetics

Supplemental Exam Problems for Study

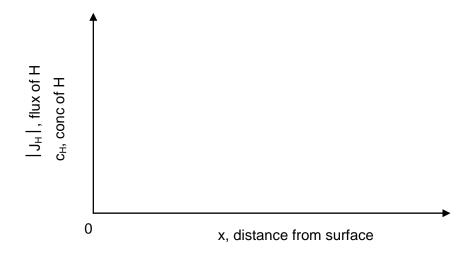

Acetaldehyde, CH₃CHO, will decompose into methane and carbon monoxide according to

$$CH_3CHO(g) \Leftrightarrow CH_4(g) + CO(g)$$

At 450°C the rate of consumption of CH₃CHO is measured to vary with the concentration of CH₃CHO raised to the power 1.5.

(a) With a CH₃CHO concentration of 0.222 M, the rate of consumption of CH₃CHO at 450°C is measured to be 3.33×10^{-3} Ms⁻¹. Calculate the rate of production of carbon monoxide when the concentration of CH₃CHO has fallen to 0.111 M.

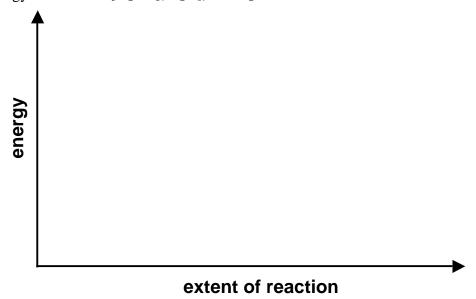
(b) On the graph below, show how the specific chemical rate constant, k, varies with temperature when the above reaction is conducted $\mathbf{0}$ in the absence of a catalyst; and $\mathbf{0}$ in the presence of a catalyst. Label both lines so as to associate each with either $\mathbf{0}$ or $\mathbf{0}$. The diagram is not to be drawn to scale; however, you must pay attention to relative magnitudes.



(a) A specimen of LaNi₅ containing hydrogen is placed in a vacuum furnace. After 1 hour, at what depth from the surface of the specimen has the concentration of hydrogen reached $\frac{1}{3}$ the initial concentration? The diffusion coefficient of hydrogen in the alloy has a value of 3.091×10^{-6} cm² s⁻¹. Assume that the initial concentration of hydrogen is uniform throughout the specimen and that the concentration of hydrogen is maintained at zero in the vacuum furnace.

DATA: Error Function Values (given without regard as to whether you need these data to solve the problem)

for values of $\xi < 0.6$, use the approximation $erf(\xi) = \xi$; erf(1.0) = 0.843; erf(2.0) = 0.998


(b) On the same graph below, sketch the profiles of \bullet the concentration of hydrogen, $c_{\rm H}$, and \bullet the absolute magnitude of the flux of hydrogen, $|J_{\rm H}|$, in the near-surface region of the specimen of part (a) at time, $t_{\rm I}$, where $0 < t_{\rm I} < 1$ h.

Azomethane, CH₃N₂CH₃, decomposes at 600 K to ethane, C₂H₆, and nitrogen, N₂. The reaction has been measured to be first order in azomethane.

- (a) Write the rate law expression for the decomposition of azomethane.
- (b) The value of the half-life, $t_{1/2}$, for this reaction has been measured to be 1920 s. How much of the initial amount of azomethane remains after 3.091 h? Express your answer as a *fraction* of the initial concentration, c_0 , of azomethane.

(c) On the plot below, sketch the variation in energy (\approx chemical potential) with extent of reaction for the decomposition of azomethane. Assume that the ratio of $E_a/\Delta E_{\rm reaction} = -3$, where E_a represents the activation energy and $\Delta E_{\rm reaction}$ the energy change of the reaction. Label E_a and $\Delta E_{\rm reaction}$. Label the energy states of CH₃N₂CH₃, C₂H₆, and N₂.

(d) How does a catalyst change the ratio of the absolute value of $E_a/\Delta E_{\rm reaction}$? Increase? Decrease? No change? Justify your answer by explaining what happens at the atomic level in the catalysis of a reaction in which all the reactants and products are gases.

There is a differential nitrogen pressure across a furnace wall made of steel measuring 2.22 mm in thickness. The concentration of nitrogen at the inner surface of the wall is held constant at 9.99 kg m⁻³, while the concentration at the outer surface of the wall is held constant at 1.11 kg m⁻³. The area of the wall is 3.33 m², and the diffusivity of nitrogen in steel at the furnace operating temperature is $D_{\rm N} = 3.091 \times 10^{-10}$ m² s⁻¹.

(a) What is the total rate loss of nitrogen from the furnace at steady state? Express your answer in units of kg s $^{-1}$.

(b) If the steel of the wall were replaced with another steel of the identical composition but with a grain size 10× larger than that of the steel in part (a), how would the loss of nitrogen from the furnace change? Explain.

(a) The energy of vacancy formation, ΔH_v , in palladium (Pd) is 1.5 eV. At 888°C there is one vacancy for every million (10⁶) atom sites. Is it possible, by simply raising the temperature and *not exceeding the melting point of the metal*, to achieve a vacancy fraction of one vacancy for every thousand (10³) atom sites?

(b) You are given two specimens of Pd, each of identical purity. Specimen **①** has a grain size of 3.091 μm; specimen **②** has a grain size of 444 μm. Which specimen will exhibit a higher rate of diffusion of hydrogen through it? Explain the reason for your choice.

Sulfuryl chloride, SO₂Cl₂, decomposes to SO₂ and Cl₂ according to

$$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$$
.

The reaction is first order in SO_2Cl_2 , and the value of the rate constant, k, is 2.2×10^{-5} s⁻¹.

- (a) Calculate the initial rate of reaction when a reactor is charged with SO_2Cl_2 at a concentration of 0.11 mol L^{-1} . Express your answer in units of mol L^{-1} s⁻¹.
- (b) Calculate how long it will take for the concentration of SO_2Cl_2 in the reactor in part (a) to fall to $\frac{1}{4}$ of its initial value. Express your answer in units of s.

(a) The diffusion coefficient of oxygen in silicon, D_0 , has been measured to have the following values:

$D_{\rm O}~({\rm cm}^2~{\rm s}^{-1})$	T (°C)
9.2×10^{-11}	1100
1.4×10^{-9}	1300

Show that in order to increase the value of D_0 by a factor of $10\times$ greater than it is at 1300° C would require raising the temperature above the melting point of silicon.

(b) Make a crude estimate showing that it is feasible to remove oxygen from a silicon ribbon of thickness $0.1~\mu m$ by exposing the ribbon to vacuum for 10 minutes at a temperature of $1100^{\circ}C$.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.