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3.091 – Introduction to Solid State Chemistry


Lecture Notes No. 9


DIFFUSION


* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Sources for Further Reading: 

1. Shermon, P.G., Diffusion in Solids, McGraw-Hill (1963). 
2. Shaw, D., Atomic Diffusion in Semiconductors, Plenum (1973). 
3. Park, G.S., Diffusion in Polymers, Academic Press (1968). 
4. Ruoff, A.L., Materials Science, Prentice-Hall (1973).
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1. DIFFUSION 

At any temperature different from absolute zero all atoms, irrespective of their state of 

aggregation (gaseous, liquid or solid), are constantly in motion. Since the movement of 

particles is associated with collisions, the path of a single particle is a zigzag one. 

However, an aggregation of “diffusing” particles has an observable drift from places of 

higher to places of lower concentration (fig. 1). For this reason diffusion is known as a 

transport phenomenon. 

Figure 1 Mass transport, diffusion as a consequence
 of existing spacial differences in concentration. 

In each diffusion reaction (heat flow, for example, is also a diffusion process), the flux 

(of matter, heat, electricity, etc.) follows the general relation: 
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Flux = (conductivity) x (driving force) 

In the case of atomic or molecular diffusion, the “conductivity” is referred to as the 

diffusivity or the diffusion constant, and is represented by the symbol D. We realize 

from the above considerations that this diffusion constant (D) reflects the mobility of the 

diffusing species in the given environment and accordingly assumes larger values in 

gases, smaller ones in liquids, and extremely small ones in solids. 

The “driving force” for many types of 

diffusion is the existence of a 

concentration gradient. The term 

ΔC/Δx → dC/dx	 “gradient” describes the variation of 

a given property as a function of 

distance in the x-direction. If a 

material exhibits a linear variation of 

concentration with distance in the 

distance x-direction, we speak of a constant 

Figure 2 Concentration gradient (constant) concentration gradient in the 
in the x direction 
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x-direction. The gradient itself is the 

rate of change of the concentration with distance (dc/dx), which is the same as the 

slope of a graph of concentration vs. position (Δc/Δx) (see fig. 2). 

Steady State and Nonsteady Diffusion 

Diffusion processes may be divided into two types: (a) steady state and (b) nonsteady 

state. Steady state diffusion takes place at a constant rate - that is, once the process 

starts the number of atoms (or moles) crossing a given interface (the flux) is constant 

with time. This means that throughout the system dc/dx = constant and dc/dt = 0. 
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Nonsteady state diffusion is a time dependent process in which the rate of diffusion is a 

function of time. Thus dc/dx varies with time and dc/dt ≠ 0. Both types of diffusion are 

described quantitatively by Fick’s laws of diffusion. The first law concerns both steady 

state and nonsteady state diffusion, while the second law deals only with nonsteady 

state diffusion. 

2. STEADY STATE DIFFUSION (FICK’S FIRST LA W) 

On the basis of the above considerations, Fick’s First Law may be formulated as: 

J � �D�dc�
dx In words: The diffusive flux is 

proportional to the 
existing concentration 
gradient. 

The negative sign in this relationship indicates that particle flow occurs in a “down” 

gradient direction, i.e. from regions of higher to regions of lower concentration. The flux 

J can be given in units of atoms/cm2s, moles/cm2s, or equivalents. Correspondingly, 

the diffusivity (D) will assume the dimensions cm2/s, as can be seen from a dimensional 

analysis: 

J �moles � � �D  �dc� �moles � cm�3�

cm2s dx cm


Thus: D = cm2/s 

Like chemical reactions, diffusion is a thermally activated process and the temperature 

dependence of diffusion appears in the diffusivity as an “Arrhenius-type” equation: 

D � Doe�Ea�RT 

where Do (the equivalent of A in the previously discussed temperature dependence of 

the rate constant) includes such factors as the jump distance, the vibrational frequency 

of the diffusing species and so on. Selected values of D, Do and Ea are given in Table 1 

(a) and (b). 
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TABLE 1


(a) Selected Values of Diffusion Constants (D) 

Diffusing Substance Solvent T (°C) D (cm2.s–1) 

Au Cu 400 5 x 10–13 

Cu (Self-Diffusing) (Cu) 650 3.2 x 10–12 

C Fe (FCC) 950 10–7 

Methanol H2O 18 1.4 x 10–5 

O2 Air 0 0.178 

H2 Air 0 0.611 

(b) Selected Values of Do and Ea for Diffusion Systems 

Solute	 Solvent Do, Ea, 
(host structure)  cm2s kJoules/mole 

1. Carbon fcc iron	 0.2100 142 

2. Carbon	 bcc iron 0.0079 76 

3. Iron	 fcc iron 0.5800 285 

4. Iron	 bcc iron 5.8000 251 

5. Nickel	 fcc iron 0.5000 276 

6. Manganese fcc iron	 0.3500 283 

7. Zinc	 copper 0.0330 159 

8. Copper	 aluminum 2.0000 142 

9. Copper	 copper 11.0000 240 

10. Silver silver	 0.7200 188 
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A typical application of Fick’s first law: Determine the rate at which helium (He), held at 

5 atm and 200°C in a Pyrex glass bulb of 50 cm diameter and a wall thickness (x) of 

0.1 cm, diffuses through the Pyrex to the outside. Assume that the pressure outside the 

tube at all times remains negligible (see fig. 3). (For the diffusion of gases it is 

He 

P2 = 5 atm 

200oC 

P1 = 0 atm 

J 

P2 

P1 

Δx 

J = - K ΔP / Δx 

Figure 3 Conditions for outdiffusion of He from a glass bulb. 

customary, although not necessary, to replace the diffusion constant D with the 

Permeation constant K, normally given in units of cm2/s.atm. Using the gas laws, K is 

readily converted to D if so desired.) 

In the present system 

K = 1 x 10–9 cm2/s.atm 

We can now set up the diffusion equation: 

J � � K�dP� (and operate with pressures instead
dx of concentrations) 

We may now formally separate the variables and integrate: 

Jdx = –KdP 

x�0.1 p1�0 

� Jdx � � � KdP 

x�0 p2�5 

J � K 5.0 
0.1 

We can forego the integration since (dP/dx) = (ΔP/Δx) and we may immediately write: 
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J (total) � � K  �P  x A  � 5 x  10�8  x 7.9  x  103  
�x  

J = 3.9 x 10–4 ?? 

The units of the flux may be obtained from a dimensional analysis: 

J � � K x  �P  x A  �  cm2 atm cm2 
� 

�x s � atm cm 1 
cm3 

s 

The total flux is 3.9 x 10–4 cm3/s (with the gas volume given for 0°C and 1 atm). If the 

total gas flow by diffusion were to be determined for a specified time interval, the 

volume would be multiplied by the indicated time. 

3. NONSTEADY STATE DIFFUSION (FICK’S SECOND LA W) 

The quantitative treatment of nonsteady state diffusion processes is formulated as a 

partial differential equation. It is beyond the scope of 3.091 to treat the equations in 

detail but we can consider the second law qualitatively and examine some relevant 

solutions quantitatively. 

The difference between steady state and nonsteady state diffusion conditions can 

readily be visualized (fig. 4). In the first case we have, for example, the diffusion of gas 

Steady state diffusion Non-steady state diffusion 

p1= const. 

p2 = const. 

J = - K Δp/Δx 

Δx 

p1 

p2 

Δx 

J 

membrane 
Δp/Δx = constant Δp/Δx = f (time) 

Figure 4 Steady state and Non-steady state diffusion 

from an infinite volume (P1 const) through a membrane into an infinite volume (P2 

const). The pressure gradient across the membrane remains constant as does the 
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diffusive flux. In the second case we deal with diffusion from a finite volume through a 

membrane into a finite volume. The pressures in the reservoirs involved change with 

time as does, consequently, the pressure gradient across the membrane. 

(You are not required to be familiar with the following derivation of the Second Fick’s 

Law, but you must know its final form.) 

Consider a volume element (between x and 

Jx Jx+dx x+dx of unit cross sectional area) of a 

C membrane separating two finite volumes 

x x+dx involved in a diffusion system (fig. 5). The 

Figure 5 x flux of a given material into the volume 

element minus the flux out of the volume 

element equals the rate of accumulation of the material into this volume element: 

Jx � Jx�dx �
�c dx�t 

[c is the average concentration in the volume element and cdx is the total amount of the 

diffusing material in the element at time (t).] 

Using a Taylor series we can expand Jx+dx about x and obtain: 

Jx�dx � Jx � 
�Jx 
�x dx � 

�2Jx 

�x2 
dx2 

2 
� ... 

Accordingly, as dx → 0: 

� 
�x 
�D �c 

dx 
� � �c 

�t 

and if D does not vary with x (which is normally the case) we have the formulation of 

Fick’s Second Law: 

�c � D �
2c (Fick�s Second Law) �t �x2 
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In physical terms this relationship states that the rate of compositional change is 

proportional to the “rate of change” of the concentration gradient rather than to the 

concentration gradient itself. 

The solutions to Fick’s second law depend on the boundary conditions imposed by the 

particular problem of interest. As an example, let us consider the following problem 

(encountered in many solid state processes): 

A frequently encountered situation is the diffusion of a component 2 into an infinite 

region of a material 1 (fig. 6) [planar diffusion of doping elements into semiconductors 

c2, supplied through the gas phase 
remains constantc2 
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Solid 

x 

c = c2 erfc x / 2 Dt 

(b) 

c2 

c2' = 0 

Figure 6 Diffusion at constant surface concentration ; bulk concentration of component
 2 at start of diffusion is c2' (in a) and is zero (in b). 

for the generation of junction devices (p-n junctions, junction transistors)]. The 

boundary conditions are: the concentration of component (2) at the surface of the solid 

phase (x=0) remains constant at c2 and the concentration of component (2) in the solid 

prior to diffusion is uniformly c2′ (a). Under these boundary conditions the solution to 

Fick’s second law assumes the form: 

c2 � c 
� erf � x �c2 � c2� 2 Dt
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If no component (2) is originally in the solid matrix (1) (b), the above solution is simpler: 

c2 � c 
� erf � x �c2 �2 Dt

c1 � � erf � x �c2 �2 Dt

c � 1 � erf � x �c2 �2 Dt

c � erfc � x �c2 �2 Dt

c � c2 erfc � x �  
2 Dt

An analysis shows that the last form of the solution to Fick’s law relates the 

concentration (c) at any position (x) (depth of penetration into the solid matrix) and time 

(t) to the surface concentration (c2) and the diffusion constant (D). The terms erf and 

erfc stand for error function and complementary error function respectively - it is the 

Gaussian error function as tabulated (like trigonometric and exponential functions) in 

mathematical tables. Its limiting values are: 

erf (0) = 0


erf (∞) = 1 And for the complementary error function:

erf (-∞) = –1 erfc = (1 – erf)


Another look at the above solution to the diffusion equation shows that the 

concentration (c) of component (2) in the solid is expressed in terms of the error 

function of the argument x�2 �Dt. To determine at what depth a particular concentration 

(c*) of (2) will appear, we substitute this concentration for (c) and obtain: 

c * � erfc � x � � Kc2 2 �Dt 

Since the error function is a constant, its argument must also be a constant: 
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Figure 7 Advance of the concentration front (c*)
 as a function of trime 

t1 t2 
t3 

x � K�

2 �Dt


Therefore, under the given boundary conditions: 

x � K� 2 �Dt


x � K� ��Dt


x � �t


The depth of penetration of a specified concentration is found to be proportional to the 

square root of the time of diffusion. 

4. SELF-DIFFUSION 

As previously indicated, the thermal motion of atoms in a lattice is a random process 

and as such will lead to local displacements of individual atoms. This random 

movement of atoms within a lattice (self-diffusion), which is not associated with any 

existing concentration gradients, can be readily demonstrated with the aid of 

“radioactive elements”. For example, nickel appears in nature in the form of several 

“stable isotopes”: 
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Ni58, Ni60, Ni61, Ni62 and Ni64 
28 28 28 28 28 

If Ni58  is irradiated with neutrons in a nuclear reactor, it will capture a neutron and 28

become Ni59 which is radioactive (a radio-isotope).28


Ni58 
28 � Co59


28 � n � Ni59 
27 � � � � 

Nickel 59 is characterized by its instability which leads to the emission of β and γ 

radiation, with a half-life of 8 x 104 years. Since this radiation can be measured by 

appropriate radiation detectors, it is possible to use Ni59 as a “tracer element” for 

studies of self-diffusion. 

The radioactive nickel (which is identical to ordinary nickel with the exception of its 

radioactive properties) is electroplated onto normal nickel. This specimen is 

subsequently placed into a furnace and heated up to close to its melting point for an 

extended period of time. After removing the specimen, it is sectioned into slices parallel 

to the surface which contained the radioactive tracer element. With the aid of a 

radiation detector it can now be shown that the Ni59, which originally was only at the 

surface, has diffused into the bulk material while simultaneously some bulk nickel has 

counter-diffused in the other direction. If this sample is heat-treated for a much longer 

time, sectioning and counting will reveal a completely uniform distribution of the 

radio-tracer element. It can thus be shown that self-diffusion does occur in solids, and 

quantitative measurements with tracer elements even permit the determination of 

self-diffusion coefficients. 

5. DIFFUSION MECHANISMS 

The diffusion process in interstitial solid solutions, like that of carbon in iron, can readily 

be understood as a result of considerable differences in atomic diameters. However, 

the fact that Au diffuses faster in Pb than NaCl diffuses in water at 15°C cannot be 

readily explained. The magnitude of the observed activation energy indicates that a 
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mechanism whereby atoms simply change places with each other has to be excluded. 

More reasonable mechanisms were suggested by Frenkel and Schottky. They 

proposed the existence of point defects (vacancies) in crystals which provide a 

mechanism by which atoms can move (diffuse) within a crystal. The concentration of 

such vacancies, as you recall, can be calculated from simple statistical calculations. 

In most solids we are not dealing with single crystals but rather with polycrystalline 

materials which contain a large number of grain boundaries (internal surfaces). As 

expected, the rate of diffusion along grain boundaries is much higher than that for 

volume diffusion (Dvolume < Dg-boundary). FInally, surface diffusion, which takes place on 

all external surfaces, is even higher (Dvolume < Dg-boundary < Dsurface). The respective 

activation energies for diffusion are: 

Ea surface < Ea grain boundary < Ea volume 

Diffusion in Non-Metals 

In non-metallic systems diffusion takes place by the same mechanisms as in metallic 

systems. Oxygen, for example, diffuses through many oxides by vacancy migration. In 

crystalline oxides and in silicate glasses as well, it is found that oxygen diffuses much 

more rapidly than the metallic ion. In glasses containing alkali atoms (Na+, K+), the 

respective rates of diffusion are: 

Dalkali > Doxygen > Dsilicon 

corresponding to differences in bonding strengths. In polymer materials diffusion 

requires the motion of large molecules since intramolecular bonding is much stronger 

than intermolecular bonding. This fact explains that the diffusion rates in such materials 

are relatively small. 

Gaseous Diffusion in Solids 

Some gases, like hydrogen and helium, diffuse through some metals with ease even at 

room temperature. Helium, for example, will diffuse through quartz and steel and limits 
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the ultimate vacuum obtainable in ultra-high vacuum systems. Hydrogen similarly 

diffuses readily through Ni at elevated temperatures. H2 also diffuses at high rates 

through palladium - a phenomenon which is used extensively for hydrogen purification 

since that material is impervious to other gases. 
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TABLE 2 

The Error Function 

z erf(z) z erf(z) 

0 0 0.85 0.7707 
0.025 0.0282 0.90. 0.7970 
0.05 0.0564 0.95 0.8209 
0.10 0.1125 1.0 0.8427 
0.15 0.1680 1.1 0.8802 
0.20 0.2227 1.2 0.9103 
0.25 0.2763 1.3 0.9340 
0.30 0.3286 1.4 0.9523 
0.35 0.3794 1.5 0.9661 
0.40 0.4234 1.6 0.9763 
0.45 0.4755 1.7 0.9838 
0.50 0.5205 1.8 0.9891 
0.55 0.5633 1.9 0.9928 
0.60 0.6039 2.0 0.9953 
0.65 0.6420 2.2 0.9981 
0.70 0.6778 2.4 0.9993 
0.75 0.7112 2.6 0.9998 
0.80 0.7421 2.8 0.9999 

SOURCE: The values of erf(z) to 15 places, in increments of z of 0.0001, can be found 

in the Mathematical Tables Project, “Table of Probability Functions . . .”, vol. 1, Federal 

Works Agency, Works Projects Administration, New York, 1941. A discussion of the 

evaluation of erf(z), its derivatives and integrals, with a brief table is given by 

H. Carslaw and J. Jaeger, in Appendix 2 of “Conduction of Heat in Solids”, Oxford 

University Press, Fair Lawn, NJ, 1959. 
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