Modules in Mechanics of Materials List of Symbols

A	area, free energy, Madelung constant	
${f A}$	transformation matrix	
$\mathcal A$	plate extensional stiffness	
a	length, transformation matrix, crack length	
a_T	time-temperature shifting factor	
B	design allowable for strength	
В	matrix of derivatives of interpolation functions	
$\mathcal B$	plate coupling stiffness	
b	width, thickness	
C	stress optical coefficient, compliance	
$\mathcal C$	viscoelastic compliance operator	
c	numerical constant, length, speed of light	
C.V.	coefficient of variation	
D	stiffness matrix, flexural rigidity of plate	
${\cal D}$	plate bending stiffness	
d	diameter, distance, grain size	
E	modulus of elasticity, electric field	
E^*	activation energy	
${\cal E}$	viscoelastic stiffness operator	
e	electronic charge	
e_{ij}	deviatoric strain	
F	force	
f_s	form factor for shear	
G	shear modulus	
\mathcal{G}	viscoelastic shear stiffness operator	
\mathcal{G}_c	critical strain energy release rate	
g	acceleration of gravity	
GF	gage factor for strain gages	
H	Brinell hardness	
$h \ I$	depth of beam	
\mathbf{I}	moment of inertia, stress invariant identity matrix	
J	polar moment of inertia	
K	bulk modulus, global stiffness matrix, stress intensity factor	
\mathcal{K}	viscoelastic bulk stiffness operator	
k	spring stiffness, element stiffness, shear yield stress, Boltzman's constant	
$\stackrel{\kappa}{L}$	length, beam span	
\mathbf{L}	matrix of differential operators	
ш	matrix of differential operators	

M bending moment

N crosslink or segment density, moire fringe number, interpolation function, cycles to failure

N traction per unit width on plate

 N_A Avogadro's number

 \mathcal{N} viscoelastic Poisson operator

n refractive index, number of fatigue cycles

n unit normal vectorP concentrated force

 P_f fracture load, probability of failure

 P_s probability of survival

p pressure, moire gridline spacing Q force resultant, first moment of area

q distributed load

R radius, reaction force, strain or stress rate, gas constant, electrical resistance

R Reuter's matrix

r radius, area reduction ratio

S entropy, moire fringe spacing, total surface energy, alternating stress

S compliance matrix

s Laplace variable, standard deviation

SCF stress concentration factor

T temperature, tensile force, stress vector, torque

 T_q glass transition temperature

t time, thickness t_f time to failure U strain energy

 U^* strain energy per unit volume

UTS ultimate tensile stress

 \tilde{u} approximate displacement function V shearing force, volume, voltage

 V^* activation volume

 $egin{array}{ll} v & ext{velocity} \ W & ext{weight, work} \ \end{array}$

u, v, w components of displacement x, y, z rectangular coordinates X standard normal variable α, β curvilinear coordinates

 α_L coefficient of linear thermal expansion

 γ shear strain, surface energy per unit area, weight density

 δ deflection

 δ_{ij} Kroenecker delta ϵ normal strain ϵ strain pseudovector ϵ_{ij} strain tensor

 ϵ_T thermal strain η viscosity

 θ angle, angle of twist per unit length

 κ curvature

 λ extension ratio, wavelength

	Poisson's ratio
1/	Poisson's ratio

 ρ density, electrical resistivity

 Σ_{ij} distortional stress

 σ normal stress

 σ stress pseudovector

 σ_{ij} stress tensor σ_e endurance limit σ_f failure stress σ_m mean stress

 σ_{M} Mises stress σ_{t} true stresss σ_{Y} yield stresss

au shear stress, relaxation time

 ϕ Airy stress function

 $\begin{array}{ll} \xi & \quad \text{dummy length or time variable} \\ \Omega & \quad \text{configurational probability} \end{array}$

 $\begin{array}{ll} \omega & \text{angular frequency} \\ \nabla & \text{gradient operator} \end{array}$

3.11 Mechanics of Materials Fall 1999

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.