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Introduction

One of the most common problems in mechanics of materials involves transformation of axes.
For instance, we may know the stresses acting on xy planes, but are really more interested in
the stresses acting on planes oriented at, say, 30◦ to the x axis as seen in Fig. 1, perhaps because
these are close-packed atomic planes on which sliding is prone to occur, or is the angle at which
two pieces of lumber are glued together in a “scarf” joint. We seek a means to transform the
stresses to these new x′y′ planes.

Figure 1: Rotation of axes in two dimensions.

These transformations are vital in analyses of stress and strain, both because they are needed
to compute critical values of these entities and also because the tensorial nature of stress and
strain is most clearly seen in their transformation properties. Other entities, such as moment of
inertia and curvature, also transform in a manner similar to stress and strain. All of these are
second-rank tensors, an important concept that will be outlined later in this module.

Direct approach

The rules for stress transformations can be developed directly from considerations of static
equilibrium. For illustration, consider the case of uniaxial tension shown in Fig. 2 in which all
stresses other than σy are zero. A free body diagram is then constructed in which the specimen
is “cut” along the inclined plane on which the stresses, labeled σy′ and τx′y′ , are desired. The
key here is to note that the area on which these transformed stresses act is different than the
area normal to the y axis, so that both the areas and the forces acting on them need to be
“transformed.” Balancing forces in the y′ direction (the direction normal to the inclined plane):
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Figure 2: An inclined plane in a tensile specimen.

A
(σyA) cos θ = σy′

(
cos θ

)

σy′ = σy cos
2 θ (1)

Similarly, a force balance in the tangential direction gives

τx′y′ = σy sin θ cos θ (2)

Example 1

Consider a unidirectionally reinforced composite ply with strengths σ̂1 in the fiber direction, σ̂2 in the
transverse direction, and τ̂12 in shear. As the angle θ between the fiber direction and an applied tensile
stress σy is increased, the stress in the fiber direction will decrease according to Eqn. 1. If the ply were
to fail by fiber fracture alone, the stress σy,b needed to cause failure would increase with misalignment
according to σy,b = σ̂1/ cos

2 θ.
However, the shear stresses as given by Eqn. 2 increase with θ, so the σy stress needed for shear

failure drops. The strength σy,b is the smaller of the stresses needed to cause fiber-direction or shear
failure, so the strength becomes limited by shear after only a few degrees of misalignment. In fact, a 15◦

off-axis tensile specimen has been proposed as a means of measuring intralaminar shear strength. When
the orientation angle approaches 90◦, failure is dominated by the transverse strength. The experimental
data shown in Fig. 3 are for glass-epoxy composites1, which show good but not exact agreement with
these simple expressions.

A similar approach, but generalized to include stresses σx and τxy on the original xy planes
as shown in Fig. 4 (see Prob. 2) gives:

σx′ = σx cos
2 θ + σy sin

2 θ + 2τxy sin θ cos θ
σy′ = σx sin

2 θ + σy cos
2 θ − 2τxy sin θ cos θ

τx′y′ = (σy − σx) sin θ cos θ + τxy(cos2 θ − sin
2 θ)

(3)

These relations can be written in pseudovector-matrix form as⎧
σ

⎫ ⎡
c2 s2⎪ 2⎨ x′ sc

σy′

⎪ σ⎬ x

=
⎢
s2 c2 −2sc

2

⎧
τx′y′ c

⎪
⎣
−sc sc − s2

⎤ ⎫⎪⎥⎦⎨ σy (4)⎩⎪ ⎪⎭ ⎪⎩ τxy
⎬
⎪⎭

1R.M. Jones, Mechanics of Composite Materials, McGraw-Hill, 1975.
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Figure 3: Stress applied at an angle to the fibers in a one-dimensional ply.

Figure 4: Stresses on inclined plane.

where c = cos θ and s = sin θ. This can be abbreviated as

σ′ = Aσ (5)

where A is the transformation matrix in brackets above. This expression would be valid for
three dimensional as well as two dimensional stress states, although the particular form of A
given in Eqn. 4 is valid in two dimensions only (plane stress), and for Cartesian coordinates.
Using either mathematical or geometric arguments (see Probs. 3 and 4), it can be shown

that the components of infinitesimal strain transform by almost the same relations:⎧⎪ ε⎨ x′

εy′⎪⎩ 1
2γx′y′

⎫⎪⎬
⎪⎭ = A

⎧⎪⎨
⎪⎩
εx
εy
1

⎫
γxy2

⎪⎬
(6)

The factor of 1/2 on the shear components arises from the

⎪⎭
classical definition of shear strain,

which is twice the tensorial shear strain. This introduces some awkwardness into the transfor-
mation relations, some of which can be reduced by defining the Reuter’s matrix as

1 0 0 1 0 0
[R] =

⎡
0 1 0

⎤
0 0 2

⎥
or [R]−1 =

⎡
⎣⎢ ⎦ ⎢

0 1 0⎣
0 0 1

⎤

2

⎥
(7)

We can now write:

⎦

⎧
εx′

εy′

⎫
x

R

⎧⎪⎨
⎪⎩ γx′y′

⎪ ε⎬
=

⎪ ′⎨
εy′⎪⎭ ⎪⎩ 1
2γx′y′

⎫⎪⎬
⎪⎭ = RA

⎧⎪⎨
⎪⎩
εx
εy
1
2γxy

⎫⎪⎬
⎪⎭ = RAR−1

⎧⎪⎨
⎪⎩
εx
εy
γxy

⎫⎪⎬
⎪⎭
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Or

ε′ = RAR−1ε (8)

As can be verified by expanding this relation, the transformation equations for strain can also
be obtained from the stress transformation equations (e.g. Eqn. 3) by replacing σ with ε and τ
with γ/2:

εx′ = εx cos
2 θ + εy sin

2 θ + γxy sin θ cos θ
εy′ = εx sin

2 θ + εy cos
2 θ − γxy sin θ cos θ

γx′y′ = 2(εy − ε 2 2
x) sin θ cos θ + γxy(cos θ − sin θ)

(9)

Example 2

Consider the biaxial strain state

ε =

⎧
ε .⎨ x′

εy′

⎫
0 01⎬

= −
γx′y′

⎧⎨
0.01
0

⎫⎬

The state of strain ε′ referred to axes rot

⎩
ated by θ

⎭
= 45

⎩
◦ from the

⎭
x-y axes can be computed by matrix

multiplication as:

A =

⎡
c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

⎤ ⎡
0.5 0.5 1.0⎣ ⎦ = ⎣ 0.5 0.5 −1.0
−0.5 0.5 0.0

⎤

Then

⎦

ε′ = RAR−1ε⎡
1.0 0.0 0.0 0.5 0.5 1.0 1.0 0.0 0.0 0.00

= 0.0 1.0 0.0

⎤⎡
0.5 0.5 −1.0 0.0 1.0 0.0 = 0.00

0.0 0.0 2.0 −0.5 0.5 0.0

⎤⎡
0.0 0.0 0.5

⎤ ⎧⎨
−0.02

⎫⎬

Obviously, the ma

⎣
trix multiplica

⎦
tio

⎣
n method is tedious

⎦
unless

⎣
matrix-handling

⎦ ⎩
software

⎭
is available, in

which case it becomes very convenient.

Mohr’s circle

Everyday experience with such commonplace occurrences as pushing objects at an angle gives
us all a certain intuitive sense of how vector transformations work. Second-rank tensor trans-
formations seem more abstract at first, and a device to help visualize them is of great value. As
it happens, the transformation equations have a famous (among engineers) graphical interpre-
tation known as Mohr’s circle2. The Mohr procedure is justified mathematically by using the
trigonometric double-angle relations to show that Eqns. 3 have a circular representation (see
Prob. 5), but it can probably best be learned simply by memorizing the following recipe3:

2Presented in 1900 by the German engineer Otto Mohr (1835–1918).
3An interactive web demonstration of Mohr’s circle construction is available at

<http://web.mit.edu/course/3/3.11/www/java/mohr.html>.
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1. Draw the stress square, noting the values on the x and y faces; Fig. 5(a) shows a hypo-
thetical case for illustration. For the purpose of Mohr’s circle only, regard a shear stress
acting in a clockwise-rotation sense as being positive, and counter-clockwise as negative.
The shear stresses on the x and y faces must then have opposite signs. The normal stresses
are positive in tension and negative in compression, as usual.

Figure 5: Stress square (a) and Mohr’s circle (b) for σx = +5, σy = −3, τxy = +4. (c) Stress
state on inclined plane.

2. Construct a graph with τ as the ordinate (y axis) and σ as abscissa, and plot the stresses
on the x and y faces of the stress square as two points on this graph. Since the shear
stresses on these two faces are the negative of one another, one of these points will be
above the σ-axis exactly as far as the other is below. It is helpful to label the two points
as x and y.

3. Connect these two points with a straight line. It will cross the σ axis at the line’s midpoint.
This point will be at (σx + σy)/2, which in our illustration is [5 + (−3)]/2 = 1.

4. Place the point of a compass at the line’s midpoint, and set the pencil at the end of the
line. Draw a circle with the line as a diameter. The completed circle for our illustrative
stress state is shown in Fig. 5(b).

5. To determine the stresses on a stress square that has been rotated through an angle θ
with respect to the original square, rotate the diametral line in the same direction through
twice this angle; i.e. 2θ. The new end points of the line can now be labeled x′ and y′, and
their σ-τ values are the stresses on the rotated x′-y′ axes as shown in Fig. 5(c).

There is nothing mysterious or magical about the Mohr’s circle; it is simply a device to help
visualize how stresses and other second-rank tensors change when the axes are rotated.
It is clear in looking at the Mohr’s circle in Fig. 5(c) that there is something special about

axis rotations that cause the diametral line to become either horizontal or vertical. In the first
case, the normal stresses assume maximal values and the shear stresses are zero. These normal
stresses are known as the principal stresses, σp1 and σp2, and the planes on which they act are
the principal planes. If the material is prone to fail by tensile cracking, it will do so by cracking
along the principal planes when the value of σp1 exceeds the tensile strength.

Example 3

It is instructive to use a Mohr’s circle construction to predict how a piece of blackboard chalk will break
in torsion, and then verify it in practice. The torsion produces a state of pure shear as shown in Fig. 6,
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which causes the principal planes to appear at ±45◦ to the chalk’s long axis. The crack will appear
transverse to the principal tensile stress, producing a spiral-like failure surface. (As the crack progresses
into the chalk, the state of pure shear is replaced by a more complicated stress distribution, so the last
part of the failure surface deviates from this ideal path to one running along the axial direction.) This
is the same type of fracture that occurred all too often in skiers’ femurs, before the advent of modern
safety bindings.

Figure 6: Mohr’s circle for simple torsion.

Figure 7: Principal stresses on Mohr’s circle.

By direct Pythagorean construction as shown in Fig. 7, the Mohr’s circle shows that the
angle from the x-y axes to the principal planes is

τxy
tan 2θp = (10)

(σx − σy)/2

and the values of the principal stresses are

σx + σy
σp1,p1 =

2
±

√(
σx − σy

2

2

)
+ τ2xy (11)

where the first term above is the σ-coordinate of the circle’s center, and the second is its radius.
When the Mohr’s circle diametral line is vertical, the shear stresses become maximum, equal

in magnitude to the radius of the circle:
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τmax =

√(
σx − σy
2

)2
+ τ2xy =

σp1 − σp2
(12)

2

The points of maximum shear are 90◦ away from the principal stress points on the Mohr’s circle,
so on the actual specimen the planes of maximum shear are 45◦ from the principal planes. The
molecular sliding associated with yield is driven by shear, and usually takes place on the planes
of maximum shear. A tensile specimen has principal planes along and transverse to its loading
direction, so shear slippage will occur on planes ±45◦ from the loading direction. These slip
planes can often be observed as “shear bands” on the specimen.
Note that normal stresses may appear on the planes of maximum shear, so the situation

is not quite the converse of the principal planes, on which the shear stresses vanish while the
normal stresses are maximum. If the normal stresses happen to vanish on the planes of maximum
shear, the stress state is said to be one of “pure shear,” such as is induced by simple torsion.
A state of pure shear is therefore one for which a rotation of axes exists such that the normal
stresses vanish, which is possible only if the center of the Mohr’s circle is at the origin, i.e.
(σx + σy)/2 = 0. More generally, a state of pure shear is one in which the trace of the stress
(and strain) matrix vanishes.

Example 4

Figure 8: Strain and stress Mohr’s circles for simple shear.

Mohr’s circles can be drawn for strains as well as stresses, with shear strain plotted on the ordinate and
normal strain on the abscissa. However, the ordinate must be γ/2 rather than just γ, due to the way
classical infinitesimal strains are defined. Consider a state of pure shear with strain γ and stress τ as
shown in Fig. 8, such as might be produced by placing a circular shaft in torsion. A Mohr’s circle for
strain quickly shows the principal strain, on a plane 45◦ away, is given by ε1 = γ/2. Hooke’s law for shear
gives τ = Gγ, so ε1 = τ/2G. The principal strain is also related to the principal stresses by

1
ε1 = (σ1 − νσ2)

E

The Mohr’s circle for stress gives σ1 = −σ2 = τ , so this can be written

τ

2G
=
1
[τ − ν(−τ)]
E

Canceling τ and rearranging, we have the relation among elastic constants stated earlier without proof:

E
G =

2(1 + ν)
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General approach

Figure 9: Transformation of vectors.

Another approach to the stress transformation equations, capable of easy extension to three
dimensions, starts with the familiar relations by which vectors are transformed in two dimensions
(see Fig. 9):

Tx′ = Tx cos θ + Ty sin θ

Ty′ = −Tx sin θ + Ty cos θ

In matrix form, this is {
Tx′
} [

cos θ sin θ
T sin

]{
Tx=

y′ − θ cos θ Ty

}

or

T′ = aT (13)

where a is another transformation matrix that serves to transform the vector components in the
original coordinate system to those in the primed system. In index-notation terms, this could
also be denoted aij, so that

T ′i = aijTj

The individual elements of aij are the cosines of the angles between the i
th primed axis and the

jth unprimed axis.
It can be shown by direct examination that the a matrix has the useful property that its

inverse equals its transpose; i.e., a−1 = aT. We can multiply Eqn. 13 by aT to give

aTT′ = (aTa)T = T (14)

so the transformation can go from primed to unprimed, or the reverse.
These relations can be extended to yield an expression for transformation of stresses (or

strains, or moments of inertia, or other similar quantities). Recall Cauchy’s relation in matrix
form:

[σ]n̂ = T

Using Eqn. 14 to transform the n̂ and T vectors into their primed counterparts, we have
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[σ]aTn̂′ = aTT′

Multiplying through by a:

(a[σ]aT)n̂′ = (aaT)T′ = T′

This is just Cauchy’s relation again, but in the primed coordinate frame. The quantity in
parentheses must therefore be [σ′]:

[σ′] = a[σ]aT (15)

Therefore, transformation of stresses and can be done by pre- and postmultiplying by the same
transformation matrix applicable to vector transformation. This can also be written out using
index notation, which provides another illustration of the transformation differences between
scalars (zero-rank tensors), vectors (first-rank tensors), and second-rank tensors:

rank 0: b′ = b
rank 1: T ′i = aijTj (16)
rank 2: σ′ij = aijaklσkl

In practical work, it is not always a simple matter to write down the nine elements of the
a matrix needed in Eqn. 15. The squares of the components of n̂ for any given plane must
sum to unity, and in order for the three planes of the transformed stress cube to be mutually
perpendicular the dot product between any two plane normals must vanish. So not just any nine
numbers will make sense. Obtaining a is made much easier by using “Euler angles” to describe
axis transformations in three dimensions.

Figure 10: Transformation in terms of Euler angles.

As shown in Fig. 10, the final transformed axes are visualized as being achieved in three
steps: first, rotate the original x-y-z axes by an angle ψ (psi) around the z-axis to obtain a
new frame we may call x′-y′-z. Next, rotate this new frame by an angle θ about the x′ axis to
obtain another frame we can call x′-y′′-z′. Finally, rotate this frame by an angle φ (phi) around
the z′ axis to obtain the final frame x′′-y′′′-z′. These three transformations correspond to the
transformation matrix⎡

cosψ sinψ 0
⎤⎡

1 0 0 cosφ sinφ 0
a = ⎣ − sinψ cosψ 0 ⎦⎣ 0 cos θ sin θ − sinφ cosφ 0

0 0 1 0 − sin θ cos θ

⎤⎡
⎦⎣

0 0 1

⎤

9
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This multiplication would certainly be a pain if done manually, but is a natural for a computa-
tional approach.

Example 5

The output below shows a computer evaluation of a three-dimensional stress transformation, in this
case using MapleTM symbolic mathematics software.

# read linear algebra library

> with(linalg):

# Define Euler-angle transformation matrices:

> a1:=array(1..3,1..3,[[cos(psi),sin(psi),0],[-sin(psi),cos(psi),0],[0,0

> ,1]]);

[cos(psi) sin(psi) 0]

a1 := [-sin(psi) cos(psi) 0]

[ 0 0 1]

> a2:=array(1..3,1..3,[[1,0,0],[0,cos(theta),sin(theta)],[0,-sin(theta),

> cos(theta)]]);

[1 0 0 ]

a2 := [0 cos(theta) sin(theta)]

[0 -sin(theta) cos(theta)]

> a3:=array(1..3,1..3,[[cos(phi),sin(phi),0],[-sin(phi),cos(phi),0],[0,0

> ,1]]);

[cos(phi) sin(phi) 0]

a3 := [-sin(phi) cos(phi) 0]

[ 0 0 1]

# Overall transformation matrix (multiply individual Euler matrices):

> a:=a1&*a2&*a3;

a := (a1 &* a2) &* a3

# Set precision and read in Euler angles (converted to radians); here

# we are rotating 30 degrees around the z axis only.

> Digits:=4;psi:=0;theta:=30*(Pi/180);phi:=0;

Digits := 4

psi := 0

theta := 1/6 Pi

phi := 0

# Display transformation matrix for these angles: "evalf" evaluates the

# matrix element, and "map" applies the evaluation to each element of

# the matrix.

> aa:=map(evalf,evalm(a));

[1. 0. 0. ]

aa := [0. .8660 .5000]

[0. -.5000 .8660]

# Define the stress matrix in the unprimed frame:

> sigma:=array(1..3,1..3,[[1,2,3],[2,4,5],[3,5,6]]);

[1 2 3]

sigma := [2 4 5]

[3 5 6]

# The stress matrix in the primed frame is then given by Eqn. 15:

> ’sigma_prime’=map(evalf,evalm(aa&*sigma&*transpose(aa)));

[ 1. 3.232 1.598]

sigma_prime = [3.232 8.830 3.366]

[1.598 3.366 1.170]
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Principal stresses and planes in three dimensions

Figure 11: Traction vector normal to principal plane.

The Mohr’s circle procedure is not capable of finding principal stresses for three-dimensional
stress states, and a more general method is needed. In three dimensions, we seek orientations
of axes such that no shear stresses appear, leaving only normal stresses in three orthogonal
directions. The vanishing of shear stresses on a plane means that the stress vector T is normal
to the plane, illustrated in two dimensions in Fig. 11. The traction vector can therefore be
written as

T = σpn̂

where σp is a simple scalar quantity, the magnitude of the stress vector. Using this in Cauchy’s
relation:

σn̂ = T = σpn̂

(σ − σpI) n̂ = 0 (17)

Here I is the unit matrix. This system will have a nontrivial solution (n̂ �= 0) only if its
determinant is zero:

∣∣ σx − σp τxy τ

| p

∣ xz

σ − σ I| =
∣
τxy σy − σp τyz

∣
= 0

τxz τyz σz − σp

∣∣∣

Expanding the determinant yields a

∣∣∣
cubic polynomial equation in

∣∣∣
σp:

f(σp) = σ
3
p − I1σ

2
p + I2σp − I3 = 0 (18)

This is the characteristic equation for stress, where the coefficients are

I1 = σx + σy + σz = σkk (19)

1
I2 = σxσy + σ

2
xσ

2 2
z + σyσz − τxy − τyz − τxz = 2

(σiiσjj − σijσij) (20)
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I3 = det |σ| =
1
σijσjkσki (21)
3

These I parameters are known as the invariants of the stress state; they do not change with
transformation of the coordinates and can be used to characterize the overall nature of the
stress. For instance I1, which has been identified earlier as the trace of the stress matrix, will be
seen in a later section to be a measure of the tendency of the stress state to induce hydrostatic
dilation or compression. We have already noted that the stress state is one of pure shear if its
trace vanishes.
Since the characteristic equation is cubic in σp, it will have three roots, and it can be shown

that all three roots must be real. These roots are just the principal stresses σp1, σp2, and σp3.

Example 6

Consider a state of simple shear with τxy = 1 and all other stresses zero:

[σ] =

⎡
0 1 0⎣ 1 0 0
0 0 0

⎤

The invariants are

⎦

I1 = 0, I2 = −1, I3 = 0

and the characteristic equation is

σ3p − σp = 0

This equation has roots of (-1,0,1) corresponding to principal stresses σp1 = 1, σp2 = 0, σp3 = −1,
and is plotted in Fig. 12. This is the same stress state considered in Example 4, and the roots of the
characteristic equation agree with the principal values shown by the Mohr’s circle.

Figure 12: The characteristic equation for τxy = 1, all other stresses zero.
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Problems

1. Develop an expression for the stress needed to cause transverse failure in a unidirectionally
oriented composite as a function of the angle between the load direction and the fiber
direction, and show this function in a plot of strength versus θ.

2. Use a free-body force balance to derive the two-dimensional Cartesian stress transformation
equations as

σx′ = σx cos
2 θ + σy sin

2 θ + 2τxy sin θ cos θ
σy′ = σx sin

2 θ + σy cos
2 θ − 2τxy sin θ cos θ

τx′y′ = (σy − σx) sin θ cos θ + τ 2
xy(cos θ − sin

2 θ)

Or

⎧ ⎫ ⎡
2 2

⎤⎧ ⎫⎨⎪ σx′ 2sc σx
σy′

⎪ c s⎬
=
⎢
s2 c2 −2sc σ⎩ τ ⎪ ⎣ y⎪ ⎭ −sc sc c2 − s2x′y′

⎪⎥⎨⎦⎪⎩ τxy
⎪⎬

where c = cos θ and s = sin θ.

⎪⎭

Prob. 2

3. Develop mathematical relations for displacements and gradients along transformed axes
of the form

u′ = u cos θ + v sin θ

∂

∂x′
=
∂

∂x
·
∂x

∂x′
+
∂

∂y
·
∂y

∂x′
=
∂

∂x
· cos θ +

∂
· sin θ

∂y

with analogous expressions for v′ and ∂/∂y′. Use these to obtain the strain transformation
equations (Eqn. 6).

4. Consider a line segment AB of length ds2 = dx2 + dy2, oriented at an angle θ from the
Cartesian x− y axes as shown. Let the differential displacement of end B relative to end
A be

∂u
du =

∂x
dx+

∂u

∂y
dy

13



dv =
∂v

∂x
dx+

∂v
dy

∂y

Use this geometry to derive the strain transformation equations (Eqn. 6), where the x′

axis is along line AB.

Prob. 4

5. Employ double-angle trigonometric relations to show that the two-dimensional Cartesian
stress transformation equations can be written in the form

σ
σ y
x = x+σ
′

2 +σx−σy2 cos 2θ + τxy sin 2θ

τx′y′ = −σx−σy2 sin 2θ + τxy cos 2θ

σy′ =
σx+σy
2 +

σx−σy cos 2θ − τxy sin 2θ2

Use these relations to justify the Mohr’s circle construction.

6. Use matrix multiplication (Eqns. 5 or 8) to transform the following stress and strain states
to axes rotated by θ = 30◦ from the original x-y axes.

(a)

.

σ

⎧⎪ 1 0
=
⎨
−2.0

⎫
3.0

⎪⎬

(b)

⎪⎩ ⎪⎭

ε =

⎧⎪ 0.01⎨
−0.02

⎫
⎪
0.03

⎪⎬
⎪

7. Sketch the Mohr’s circles for each of the st

⎩
ress stat

⎭
es shown in the figure below.

8. Construct Mohr’s circle solutions for the transformations of Prob. 6.

9. Draw the Mohr’s circles and determine the magnitudes of the principal stresses for the
following stress states. Denote the principal stress state on a suitably rotated stress square.

(a) σx = 30 MPa, σy = −10 MPa, τxy = 25 MPa.

(b) σx = −30 MPa, σy = −90 MPa, τxy = −40 MPa.

(c) σx = −10 MPa, σy = 20 MPa, τxy = −15 MPa.
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Prob. 7

10. Show that the values of principal stresses given by Mohr’s circle agree with those ob-
tained mathematically by setting to zero the derivatives of the stress with respect to the
transformation angle.

11. For the 3-dimensional stress state σx = 25, σy = −15, σz = −30, τyz = 20, τxz = 10,
τxy = 30 (all in MPa):

(a) Determine the stress state for Euler angles ψ = 20◦, θ = 30◦, φ = 25◦.

(b) Plot the characteristic equation.

(c) Determine the principal stresses.
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