3.15 Transformers and DC motors C.A. Ross, DMSE, MIT

References:

Braithwaite and Weaver, Electronic Materials, sections 3.2 and 3.3 (Jiles, Introduction to Magnetism and Magnetic Materials 4.3.3 & 12.1.7)

How do transformers work?

Two coils wrap around a soft magnetic core. The input side has a varying current i_m through n turns of wire.

Ampere: $\oint H.dl = ni_m$ Within the core, $B = \mu_o \mu_r H$ (Soft magnet: large, nearly constant μ_r)

Put a secondary coil around the core: n' turns Faraday $V = -n' d\phi/dt$ where $\phi = B.A (A = coil area)$

Now we draw a current from the secondary: current i_s induces a current i_p back in the primary. Now primary current is $i_m + i_p$.

Power transferred $V_s i_s = V_p i_p$, where $V_s/V_p = n'/n$

Properties of the core:

- easy to magnetize to have a high B

- high B_s
- low hysteresis

- resistive to avoid eddy currents.

	T _c / K	B _s /T	Hc / A/m	μ _r	W, J/m^3
Fe	1043	2.2	~4	200,000	30
Fe-3%Si	1030	2.1	~12	40,000	30
a-FeBSi	630	1.6	~0	>100,000	15

Soft magnetic materials

How do DC motors work?

We characterize hard magnets by the $(BH)_{max}$ product in the hysteresis loop. For the magnet to be able to do some useful work, it needs to produce some external flux, e.g. at the gap of a ring-shaped magnet with a cut made in it. Field H_g exists in the gap.

Ampere: $l_m H_m + l_g H_g = 0$ around dotted linealso $B_m = B_g$ $B_m = \mu_o \mu_r H_m$ (negative since in second quadrant) $B_g = \mu_o H_g$ hence $H_m = -l_g B_m / l_m \mu_o$

t

This linear relation intersects the hysteresis loop and defines uniquely the operating point.

The amount of work that can be done by the magnet is proportional to $l_g H_g B_g$ so scales with the $(BH)_{max}$ product.

In a permanent magnet motor: a current i runs through a wire length l in a B field. Force F = Bil (use Fleming's left hand rule) This gives a force perpendicular to the wire and to B.

- A radial B is produced by two permanent magnets called the stator.

- The wire is wrapped round a vertical piece made of a soft magnet (the rotor). The purpose of the soft magnet is to concentrate the flux lines through the coil, giving maximum B.

- Current is supplied by a commutator (sliding contact).

Desirable properties of the permanent magnets: must stay magnetized despite their shape, and the fields produced by the wire, hence a high coercivity. Must produce large B, hence a high B_s i.e. high (BH)_{max}.

Efficiency of motor is maximized if we can reduce the resistive losses in the wire. So minimize $\rho i/ABv$, where ρ is resistivity, A is wire x-section and v is rotation velocity.

0						
	T _c / K	B_r/T	Hc / kA/m	$(BH)_{max}, kJ/m^3$		
Alnico-5	1160	1.4	64	44		
$BaO.(Fe_2O_3)_6$	720	0.4	264	28		
SmCo5	1000	0.85	600	140		
Nd ₂ Fe ₁₄ B	620	1.1	890	216		
		remanence				

Hard magnetic materials