
Chapter 3


Heat Conduction


3.1	 September 24, 2003: Wrap up dimensional analysis, start heat 
conduction 

Mechanics: 

•	 Handout: heat conduction equation solutions.


GE CEO tomorrow noon Bartos
• 

•	 Tests 1, 2 (10/10, 11/19) first part in 2143. 

• Final Mon 12/15 1:304:30 “2105”... 

Muddy stuff from last time: 

•	 How steadystate diffusion in oxide? 

How is C1 − C0 = 2 ρ ? C1 − C0 � C3 − C1 and C1 − C0 � C0, so for this purpose, C1 = C3 =molesM• 
oxygen/unit volume in SiO2 and C0 � 0. Molar density of SiO2 is ρ/M , molar density of oxygen is 
twice that. 

•	 Dimensional analysis was fast. Yes, learning the steps is easy, but “How to choose which variables to 
‘postulate desired behavior’ ?” Not easy, learn by example—we’ll do this many more times this term... 

•	 How to form dimensionless quantities? If counted i = n − r correctly, and chose dimensionally
independent parameters to eliminate, then like simultaneous equations: units of J * (units of ΔC)a ... 
etc. Table as an easier way of doing that. Will do an example today with πk . 

•	 (Multiple people) How is πJ a function of πk ? Stay tuned for the dramatic conclusion of dimensional 
analysis... 

Dimensional Analysis Recap last time: 

1. Postulate desired behavior as a function of the other variables,	 e.g. JO = f(C1 − C3, k, D, Y ), or 
f(JO , C1 − C3, k, D, Y ) = 0. The number of parameters is n, in this case n = 5. 

2. Find the number of base units in the system r. Here: cm, s, mol, so r = 3. (Rank of the dimensional 
matrix...) 

3. Buckingham Pi theorem: number of dimensionless groups = n− r. 

4. Choose r dimensionallyindependent variables to eliminate, which will make the others dimensionless. 
Here we’ll choose C1 − C3, D, and Y (NOT k, D and Y because they’re not independent!) 
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5. Form the π groups from what’s left, which are unitless versions of the parameters kept: 

JOY kY 
πJ = (C3 − C1)D

, πk = . 
D 

6. Rewrite Step 1 in dimensionless terms, and we’re done: πJ = f (πk). 

What’s this? So simple? Can’t be. Let’s test: 

C3 − C1
JO = 

1 + Y 
k D 

YMult by (C3 −C1 )D to give 

D DJOY 1 1 + kY − 
= 1 − 

1 
= = kY 

D D(C3 − C1)D + 1 + 1 1 + kY 
kY kY	 D 

So, 
1 

πJ = 1 − 
1 + πk 

DLimiting cases: large πk means πJ = 1 − 0 = 1, so JO = Y (C3 − C1). 
1 D 

Y (C3 − C1) kY For small πk, use 1+x � 1 − x near x = 0, so πJ = πk, JO = = k(C3 − C1). Excellent! D 
Purpose: simplify down to an easier expression, single graph. If couldn’t solve equation, single graph 

could be obtained from one experiment, generalized to any other reactiondiffusion problem of the same 
nature. Physical modeling, e.g. wind tunnel: get the dimensionless numbers right, every detail of flow is the 
same, dimensionless drag force is identical! 

Heat Conduction Conservation of math (in one ear, out the other). But seriously, conservation of thermal 
energy, for us enthalpy. Usual equation: 

accumulation = in − out + generation 

dH 
V = Aqin − Aqout + V q̇

dt 
Note on the accumulation term: when temperature changes, enthalpy changes according to the heat capacity, 
build up units from dT/dt (Kelvin/sec) adding cp and ρ to get to Joules/sec. 

What’s heat flux �q? Like diffusion goes down the conc gradient (actually, chem potential gradient), heat 
goes down the temperature gradient, proportionality constant k: 

q = −k�T.	 (3.1) 

Using that inout and that accumulation term, derive the 1D heat equation, same as diffusion in section 2.5 
(p.	 20). Simplify constant k, 1D, so: 

∂T ∂2T 
ρcp = k + q̇.	 (3.2)

∂t ∂x2 

Define thermal diffusivity α = k/ρcp, with no gen reduces to diffusion equation, and give 1D solutions: 

• 1D steadystate: linear temperature. 

• Cylindrical steadystate: T = A ln r + B; with uniform generation: T = A ln r + B − Gr2/2 

• 1D semiinfinite uniform initial, constant T	 boundary: 

xT − Ts 

T∞ − Ts 
= erf 

2
√

αt 
.	 (3.3) 
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• 1D finite, uniform initial T , boundary constant T : Fourier series 

∞ � � � � n2π2αt nπx T − Ts = 
� 

an exp − 
L2 

sin (3.4)
Ti − Ts L 

n=1 

Even more on the handout, not responsible for any further than handout (and not asterisks either). 
Timescale to steadystate... any guesses? 

Optional: Why does heat go down the temp gradient, and diffusion down the chem potential gradient? 
Thermo: increasing S or decreasing G. Spinodal decomposition: negative ∂2G/∂C2, uphill diffusion! Fourier 
series in reverse... 
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3.2	 September 26, 2003: Heat conduction: boundary layers, mul
tilayer wall 

Opener: Christine Ortiz talk on how inquisitive this class is... 
Mechanics: 

• PS3 due today, PS4 due Monday 10/6. 

• Last test 1 material next Wednesday, following math quiz in 2143! 

• Tests 1, 2 (10/10, 11/19) first part in 2143. 

• Final Mon 12/15 1:304:30 “2105”... 

• Zeiss materials microscopy truck at Chapel Turnaround 10/2 94. 

Muddy from last time: 
1 •	 Why is πJ = πk at small πk ? Okay. For x � 1, x � 2 − x. So, for πk � 0, 1 + πk � 1, and


1

1 + πk 

� 2 − (1 + πk ) = 1 − πk 

1 
πJ = 1 − 

1 + πk 
� 1 − (1 − πk ) = πk 

Boundary conditions 

•	 Constant temperature.


−k ∂T
ˆ• Constant flux q� · n const, in 1D qx = ∂x . 

• Heat transfer coefficient: qx = h(T − Tenv ). UNITS! 

On the last, think about a boundary layer of thickness δ in a fluid, model h as kf /δ. Then we can look 
at steadystate heat conduction through a plate, in particular the heat flux (T1 BC on bottom, h(T2 − Tenv ) 
BC on top): 

k 
q = (T1 − T2) = h(T2 − Tenv )

L

T1 − Tenv 
q = 

1 + L 
h k 

Awesome! Now you know W3R chapters 17 and 18—well, mostly. 

Multilayer wall With lots of layers, just add up the resistances... 

T0 − Tn 
q = 

1 + L1 + L2 1+ ... + Ln +h k1 k2 kn h2 

Same qx everywhere implies that layers with higher k have lower ∂T/∂x. 
Cylindrical is slightly different, uses fluxarea product, based on log solution: 

2πL(T1 − T4)
Q = qA = 

11 ln R2 + 1 ln R3 +k1 R1 k2 R2 hR3 

Temperature trick: use Biot number equivalent: 

T0 − T2 resistances bet 2 and n 
= 

T2 − Tn resistances bet 0 and 2 
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3.3 September 29, 2003: Finally, the graphs! 

Fun opener: typeset homework and course evaluation handwriting... 
Mechanics: 

• PS4 due Monday 10/6. 

• Last test 1 material Wednesday, following math quiz in 2143! 

• Tests 1, 2 (10/10, 11/19) first part in 2143. 

• Final Mon 12/15 1:304:30 “2105”... 

• Zeiss materials microscopy truck at Chapel Turnaround 10/2 94. 

Moddy from last time: 

• How did we get: 
T1 − Tfl 

qx = 
1 ? 

+ L 
h ks 

Yes, skipped some steps because the math here is the same as the math for diffusion. See notes of 9/19 
(section 2.7, page 24) for the derivation. 

• Temperature for large Biot, small Biot... 

• Albert: parallel composite wall... 

• Blackboard technique... 

Today’s motivating example: powder metallurgy by spray/gas atomization. Small droplets, very rapid 
cooling, rapid solidification microstructures, solute trapping. 

So, suppose initial condition T = Ti, outside fluid at Tfl. Boundary conditions: r = R ⇒ qr = h(T −Tfl). 
Want to know temperature distribution through time, or temperature history. This requires a Bessel function 
series!! How to do understand? 

• Dimensional analysis! 

• Qualitative description of behavior. 

• Graphs in text. 

• Simpified low Biot number behavior: Newtonian cooling.


Dimensional analysis:


1. Formulation: T − Tfl = f (t, r, R, Ti − Tfl, h, k, ρcp). n = 8 parameters! 

2. Base units: K, s, m, kg so m = 4. 

3. Buckingham pi: four dimensionless parameters. 

4. What to eliminate? Want to keep T − Tfl, t, r; choose h also. Eliminate R, Ti − Tfl, k, ρcp. 

5. πT is easy, as is πr. πh: eliminated by k and R. πt is funny, use k for seconds, ρcp for Joules, R for 
remaining meters. Result is the Fourier number, the ratio of t/tSS .

Note: could have used h to eliminate seconds, but result wouldn’t have been as cool: πt = ht/ρcpR.


6. Dimensionless equation: 
T − Tfl r αt hL 
Ti − Tfl 

= f 
R

,
R2 

, 
k 

The solution to this requires a Bessel function series!! No simple solution we can fit to, so qualitative. 
Now can graph πT vs. πr for various πt, different graphs for different πh. Large (> 100) reverts to the 

constant temperature boundary condition T = Tfl. 
Had to end there, continuing after the Math Quiz on Wednesday... 

30 



�	 � 

3.4	 October 1, 2003: Math Quiz, Graphs Wrapup, Newtonian 
Cooling 

Mechanics: 

• Zeiss Materials Microscopy Truck scheduled tomorrow: cancelled! 

Muddy stuff: 

•	 Mass transfer: diffusion/reactionlimited. Heat transfer: conduction/convectionlimited. Mass transfer 
can also be convectionlimited if we replace reaction constant k with mass transfer coefficient hD. 

Wrapup of The Graphs Now can graph πT vs. πr for various πt, different graphs for different πh. Large 
(> 100) reverts to the constant temperature boundary condition T = Tfl, small (< 0.1) we’ll get to in a 
moment, intermediate Biot number graphs. 

Newtonial cooling Small Biot number (< 0.1): temperture is roughly uniform. Let’s say it is uniform. 
Then we just have T (t), πT (πt, πh). Cool. 

Balance over the entire object: accumulation = out. 

dT 
V ρcp = −Aqr = Ah(T − Tfl)

dt 

Rearrange: 
dT Ah 

= dt 
T − Tfl 

− 
V ρcp 

Integrate, with initial condition Ti at t = 0: 

Aht
ln(T − Tfl) − ln(Ti − Tfl) = − 

V ρcp 

AhtT − Tfl	 = exp 
Ti − Tfl 

− 
V ρcp 

Plug in V /A: 

•	 Sphere: R/3 

•	 Cylinder: R/2 

• Plate: “R�� = L/2 

Had to end there... 
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3.5 October 3, 2003: Moving on... 

Mechanics: 

•	 Test 1 next Friday 2143; handout, answer any questions. 

•	 Regular office hours; zephyrable (instance) most of next Tuesday. 

•	 PS4 due next Monday 10/6, correction: #2a in BTU/hr not kW. Corrected version on Stellar. 

•	 PS2#3c solution error: “at t = 1 second, x = 9.6 × 10−5cm, or just under one micron. At t = 4 
seconds, x = 1.92 × 10−4cm, just under two microns.” (was ×10−5...) Corrected version on Stellar. 

• 3B Symposium Wednesday November 5. 

Muddy from last time: 

•	 What’s this equation V ρcp∂T /∂t = −Aqr? We’ve had that before, it looked like V ∂H/∂t = Aqx|x −
Aqx|x+Δx + V q̇. I just skipped a step and went straight to accum=V ρcp∂T /∂t. Sorry about that. 

•	 What’s this bit about applying to different shapes? We left everything general, with volume and area, 
so whether a sphere, rod, plate, or crumpled up piece of paper, it just works. 

The book takes a different approach to the graphs in Appendix F: πT vs. πt for various πh, graphs at 
different πr. Useful for temperature histories like PS4#3 (but skip past the early graphs...), and also for 
TTT diagrams, like our metal spray. 

T	 αt x k 
Y	 = ∞ − T 

= f X = , n = , m = 2T∞ − T0 x1 x1 hx1 

Wrapup Newtonian cooling Last time we did accum = −− out for the whole shape, got to: 

AhtT − Tfl = exp 
Ti − Tfl 

−
V ρcp 

First, examine terms, timescale, larger/smaller h, rho cp, V /A. Plug in V /A: 

•	 Sphere: R/3 

•	 Cylinder: R/2 

•	 Plate: “R�� = L/2 

•	 Other shapes: varies... 

hVCan instead define alternate Biot and Fourier numbers: Bi� = kA , Fo� = αA2 
t, then: V 2 

T − Tfl = exp 
hV kA2 

t = exp (−Bi�Fo�)
Ti − Tfl 

−
kA ρcpV 2 

So, all set for PS4, test1? 

Thermal conductivity Diffusion is straightforward: atoms move, right? Well, not quite: gases in straight 
lines, liquid atoms move in chains, vacanices, interstitials, dislocations, etc. For heat, various mechanisms: 

Collisions • 

Phonons • 

•	 Photons—radiation, which is spontaneous emission from hot body 
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Electrons • 

On electrons, WiedmannFranz law: 

π Wohm 
kel = LσelT, L = 

3
(kB /e)2 = 2.45 × 10−8 

K2 

where e=electron charge. 
Metals: σel goes down with temperature. What about electrons is semiconductors? 
Liquids: water .615 20100◦C, O2 3.4 × 10−4, H2 1.77 × 10−3 (both 300K) 
Influence of porosity and humidity/water absorption. Gases are very bad conductors, water not quite as 

bad but has very high specific heat! (PS4 #1d, water has four times cp of aluminum which is highest there.) 
WTypical conductivity values: 0.1 to 300 m·K . Porous→less, metals high, gases really small! 

Note: at conference, diamondaluminum composite for microelectronics, 45 vol% diamond but isotropic 
conductivity of 550 W/mK! Nearly twice copper, squeezecastable into heat sink parts. Q: why no diamond
iron composite? 
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3.6 October 6, 2003: Finite Differences 

Mechanics: 

•	 Test 1 next Friday 2143; handout, answer any questions. 

•	 Regular office hours; zephyrable (instance) tomorrow 912, 15. 

• Albert review session Thursday 7 PM in 8302 (next door to recitation). 

Muddy from last time: 

•	 Why πT = exp(−π� πt
�) with no πr ? Because at low Biot number, T is uniform, not a function of r orh


πr .


Finite differences Very often no analytical solution to a system. (Or if there is one, it’s impossibly 
complex.) So, use a computer, make some approximations. 

•	 Discretize space: calculate temperature at a finite number of points on a grid (here 1D). Choose xi, 
calculate Ti. For simplicity, we’ll choose evenlyspaced points, so xi+1 − xi = Δx. 

•	 Discretize time: calcluate temperature at a finite number of “timesteps” at times tn, so with both, we 
have Ti,n. For simplicity, Δt uniform. 

•	 Make some approximations about derivatives: 

∂T 
∂t 

Ti,n+1 − Ti,n� 
Δt xi ,tn+1/2 

∂T 
∂x 

Ti+1 − Ti � 
Δx xi+1/2 ,tn 

∂2T 
∂x2 

∂T ∂T − Ti−1,n − 2Ti,n + Ti+1,n 

(Δx)2 

∂x ∂x xi+1/2 ,tn xi−1/2 ,tn 

Δx xi ,tn 

So, let’s look at the energy equation, and substitute approximations: 

∂T ∂2T q̇
= α + 

∂x ∂x2 ρcp 

Ti,n+1 − Ti,n Ti−1,n − 2Ti,n + Ti+1,n q̇
= α	 +

Δt	 (Δx)2 ρcp 

Ti−1,n − 2Ti,n + Ti+1,n q̇
+

(Δx)2 

Δt 
Ti,n+1 = Ti,n + Δt = Ti,n + FoM (Ti−1,n − 2Ti,n + Ti+1,n q̇+ 

ρcp ρcp 

This is the “forward Euler” algorithm, a.k.a. “explicit” time stepping. Nice, efficient, easy to put in 
a spreadsheet. Problems: inaccurate because time and space derivatives not colocated, also unstable. 
Inaccuracy later. 

1Demonstrate instability for FoM > 2 : 

Δt 
Ti,n+1 = Ti,n(1 − 2FoM ) + 2FoM 

Ti−1,n + Ti+1,n + q̇
2 ρcp 

So, it’s like a weighted average between Ti,n and the average of the two (show graphically). When FoM > 2 , 
1the Ti,n part is negative, so we shoot past it! So, the criterion is that it must be ≤ 2 , larger timestep means 

less work, so use 1 .2 
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Exercise: cut length step in half, for same total time, how many more timesteps? How much more 
computational work? Spreadsheet area... 

To get rid of this instability, we have the “backward Euler” algorithm, a.k.a. “fully implicit” time 
stepping. 

Ti,n+1 − Ti,n Ti−1,n+1 − 2Ti,n+1 + Ti+1,n+1 q̇
= α +

Δt (Δx)2 ρcp 

Cool! But, requires simultaneous equation solution for the next timestep. But it is unconditionally stable: 
infinite timestep means we solve the steadystate problem. 

Solving the simultaneous equations: 

q̇Δt −FoM Ti−1,n+1 + (1 + 2FoM )Ti,n+1 − FoM Ti+1,n+1 = Ti,n + 
ρcp 

T0,n+1 = T0,BC 

−FoM T0,n+1 + (1 + 2FoM )T1,n+1 + −FoM T2,n+1 = T1,n + q̇1 Δt 
ρcp 

q̇1 Δt−FoM T1,n+1 + (1 + 2FoM )T2,n+1 + −FoM T3,n+1 = T2,n + ρcp

T4,n+1 = T3,BC ⎞⎛⎞⎛⎞⎛
T0,BC 1 T0 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

T1,n + q̇1 Δt⎜⎜⎝ 
⎜⎜⎝ 

⎟⎟⎠ 
⎟⎟⎠−FoM (1 + 2FoM ) −FoM 

(1 + 2FoM ) 
T1 

T2 

ρcp= q̇1 Δt−FoM −FoM 

1 
T2,n + ρcp

T3 T3,BC 

Now just use 18.06 matrix techniques: Gaussian elimination, LU decomposition, eigenvalues, etc. 
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3.7 October 8, 2003: More Finite Differences 

Mechanics: 

•	 4 , std dev 4.85, 11 100s! Warmup, next is the race. Graded math quizzes back. Avg 96 1 

•	 Test 1 next Friday 2143; handout, answer any questions. 

Review session tomorrow 7 PM 8302. • 

•	 I can have office hours Monday, but would much rather be available Wednesday 2:303:30. 

•	 PS4 solution error: Newtonian cooling eq has just one t! Also in 10/1 and 10/3 lecture notes; corrections 
in Stellar and on Athena respectively. 

Muddy from last time: 

•	 Top and bottom rows in RHS last time were wrong, should have been T0,BC and T3,BC . Sorry... 

•	 “How... theoretically interesting. 

“You said you were going to start each lecture with a ‘motivating factor’—a real example to tie things 
to so the lecture isn’t just so many symbols and numbers—where was today’s motivating factor? 

“I’m hoping to at least be able to see a problem being solved where all this is useful. Otherwise, this 
makes no sense, sorry.” 

Okay, two examples today on the laptop. 

Encourage to think of test as checkpoint, first evaluation (except Math quiz, but that doesn’t count). And 
remember, you can make it up in the second sitting. Will not be straightforward, won’t see PS problems, 
but will apply same techniques to new situations. You will have to think, but you can all do that, that’s 
why you’re here. 

Finite differences Last time: Forward Euler/explicit, and Backward Euler/implicit timestepping. But 
both of these are integrating in time using the value at previous or next timestep. Like rectangles in numerical 
integration. Graphically show error as proportional to Δt. To increase accuracy, use trapezoids, right? Then 
error is proportional to (Δt)2 . That works like: 

Ti,n+1 − Ti,n Ti−1,n − 2Ti,n + Ti+1,n + Ti−1,n+1 − 2Ti,n+1 + Ti+1,n+1 q̇i,n + q̇i,n+1 = α	 +
Δt	 2(Δx)2 2ρcp 

This is “semiimplicit”, or “CrankNicholson” time integration, also need to solve simultaneous equations. 
Error goes as Δt2 for CrankNicholson, Δt for explicit/implicit (forward/backward Euler), like trapezoid 

rule vs. simple rectangle Riemann integration. 
2D: two second derivatives in x and y, Ti,j,n at xi, yj , tn; explicit form: 

Ti,n+1 − Ti,n Ti−1,j,n − 2Ti,j,n + Ti+1,j,n Ti,j−1,n − 2Ti,j,n + Ti,j+1,n= α	 +
Δt (Δx)2	 (Δy)2 

With Δx = Δy, FoM = αΔt/(Δx)2, we have: 

Ti,n+1 = (1 − 4FoM )Ti,j + 4FoM 
Ti−1,j,n + Ti+1,j,n + Ti,j−1,n + Ti,j+1,n 

4 

So the stability criterion is: 
21 Δx

Fom Δt ≤≤ 
4 
⇒ 

4α
. 

In 3D: 
21 Δx

Fom Δt ≤≤ 
6 
⇒ 

6α
.


Laptop spreadsheet demos: iron conduction ps5.gnumeric, freezing water lecture1008.gnumeric.
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3.8 October 15, 2003: Moving Body 

Mechanics: 

•	 Test 1 a bit too long, which is average for me, but not good. Will aim for shorter next time. 

•	 Test typo: m, n switch in equation sheet graph descr. 

•	 Ambiguous wording in 4b: clarified on board, but take any selfconsistent answer. 

•	 Misleading wording in one test question! 2d: strike “—that is, what’s a more realistic shape for this 
region”. 

•	 The graph: perhaps not big enough. Good news: after initial behavior, πt ∝ exp(−t) (works for Newt 
cooling always, n = 1 term of Fourier). So on loglinear graph, straight lines, can extrapolate. 

•	 New version on Stellar (minus the graph), will be used in retake. Sorry! 

•	 Office hours: Today 2:303:30. 

•	 SOFCs and energy today 12:15 Marlar Lounge (37252), Ashley Predith, MIT. 

•	 Magnetic nanodots Monday 34 Chipman, Igor Roshchin, UCSD. 

Moving body Example: VAR of titanium alloys, nickel superalloys. Start, during operation. Nickel: 68 
kA, 17→20”; Ti around 30 kA, 30→36”. 

Competition: thermal diffusion up vs. drive down. Suggest steadystate, sketch T vs. z. 
Temperatures in ingot real complicated, flow, etc. But can analyze electrode now. Question: how much 

of the electrode is heated? What’s the temperature profile? 
Choose frame of reference of melt interface on the bottom of the electrode. Solid is moving with respect 

to frame of reference. Now conductive and convective heat fluxes: q�+ ρcpT�u (not really, but this is valid for 
the difference). 

In and out have motion component! Important thing: inout. in = uxρcpT , out too. Result when goes 
to zero: 

∂
in − out = − (qx + ρcpTux)

∂x 
This example: ux, ρ, cp are all constant, so we end up with: 

∂T ∂2T ∂T 
ρcp = k 

∂x2 
− ρcpux 

∂x 
+ q̇

∂t 

Rearrange slightly for constant ρcpux, substitute qx = −k∂T/∂x: 

∂T ∂T ∂2T 
ρcp + ux = k + q̇

∂t ∂x ∂x2 

Divide by ρcp: 
∂T ∂T ∂2T q̇

+ ux = α + 
∂t ∂x ∂x2 ρcp 

Discuss terms: why proportional to ∂T/∂x, competing effects of positive ∂2T/∂x2 and negative −∂T/∂x. 
Graphical explanation. 

What introductory math concept does this remind us of? The substantial derivative! Rewrite: 

DT ∂2T q̇
= α + 

Dt ∂x2 ρcp 

Note that’s the time derivative in the frame of reference of the moving solid. Cool! 
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Steadystate, no generation: 
∂2T ∂T 

α 
∂x2 

− ux 
∂x 

= 0 

Simple solution using the characteristic polynomial, R = 0, ux/α. Result: 

uxx 
T = A + B exp 

α 

Fit to boundary conditions: x = 0 T = TM , x = ∞⇒ T = Ti so use erfstyle: ⇒

uxxT − Ti = exp 
� 

TM − Ti α 

2
0.1 cm ∼ 5 cm = 1 cmLengthscale=α/ux. Graph, noting that ux is negative. Titanium α = s , ux , so min 12 s 

α/ux = 1.2cm, about 1/2 inch. So only the bottom few centimeters are heated at all, even at this low 
velocity! 

Heat flux into the bottom: 

uxx 
qx = −k

∂T 
= −k(Tm − Ti) 

ux exp = −ρcpux(Tm − Ti)
∂x α α 

Note ρcp(Tm −Ti) is the enthalpy per unit volume to heat metal to its melting point. Mult by ux for enthalpy 
per unit area to heat metal coming at a rate of ux, which is a cool result. 

Next time: heat flux required to melt... 
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3.9 October 17, 2003: Phase Change 

Ask Andy re retake... 
Mechanics: 

•	 New version on Stellar (minus the graph), will be used in retake. Sorry! 

•	 Test stats first time around: 6286 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean Std. Dev. Max 
1. 5 0 5 
2. 29.41 4.02 35 
3. 22.34 7.21 34 
4. 17.21 3.92 25 
Total 73.97 12.34 94 

•	 Yet another error: diffusion equation missing D! 

•	 Magnetic nanodots Monday 34 Chipman, Igor Roshchin, UCSD. (Also mention interesting talk on 
Wednesday.) 

GLOAT ABOUT YANKEES! • 
Muddy from last time: 

•	 Why H = ρcpT in quotes? Well, ΔH = ρcpΔT , for temperature change only. But H = ρcpT is not 
true, show by graph. 

•	 What is H · ux? That’s the convective flux, the transfer of heat due to motion of a substance. 

•	 Frames of reference: DT /Dt is the time rate of change for a particle moving with the solid (or later, 
fluid); ∂T/∂t is the time rate of change at a fixed point (in a certain frame). 

•	 What’s the significance of qx = −ρcpux(Tm − Ti)? Well, ρcpΔT is the heat per unit volume. How much 
heat to raise Ti from the initial temp to the melting point. Times ux gives the heat/area/time, the 
flux required to raise titanium coming in at that speed. Think of ux as meters/second, or as m3/m2 s.· 

Phase change Another important concept: heat generated/lost at interface due to phase change. If extend 
the graph beyond x = 0 into liquid, more flux from liquid into interface than from interface into solid. How 
much more? 

qx,l − qx,s = −ρΔHM ux 

Example: candle, MIT undergrad; “Build a man a fire...” 
Model of casting limited by conduction through metal, per Albert’s recitation; graphical representation 

on board. Analogy to diffusion phase change (silicon oxidation): H is like C, T is like chemical potential µ. 
Fast growth means proportional to undercooling (ask Albert), like reactionlimitation in oxidation. 

Evaporation/condensation Also for evaporation, heat flux from gas, plasma, radiation incl. laser (be
low), electron beam, etc. Condensation releases heat at a similar rate. 

Evaporation into gas: boundary layer, J = hD (Cs − Cbulk ). 
Evaporation rate into a vacuum: Langmuir equation 

pv
J = √

2πMRT 

Here the units should work, go through. 
Equilibrium pure vapor pressure: ClausiusClapeyron equation, one form: 

A
log10 pv = − 

T 
+ B + C log10 T (+DT ) 

Units: torr, conversion factor. If not pure, then mult by activity. Either way, multiply material flux J by 
ΔHvap for heat flux influence. 
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3.10 October 20, 2003: Radiation 

Mechanics: 

• Test stats first time around: 6286 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean before Std. Dev. Max 
1. 5 0 5 
2. 29.41 4.02 35 
3. 22.34 7.21 34 
4. 17.21 3.92 25 
Total 73.97 12.34 94 

• Magnetic nanodots today 34 Chipman, Igor Roshchin, UCSD. 

Evaporation cont’d: When to use dense gas, lineofsight vacuum approxes? Mean free path λ: 
1 

λ = √
2πσ2n 

σ is collision diameter, n is number of molecules per unit volume, P/kB T (sketch molecules). Important 
thing is the Knudsen number, λ/L, given by: 

λ kT 
Kn = = 

L 
√

2πσ2P L 

so in P − T space, lines deliniate “lineofsight” régime (Kn>1), “continuum” régime (Kn<0.01). 

e 

Radiation! Def: spontaneous emission of photons from a hot body. Emission, absorption, reflection, 
transmission. Cosine distribution: handwaving skin depth explanation. 

Happens throughout a body, but surface emission follows a cosine distribution: handwaving explanation 
of skin depth as a function of angle. 

Concept: black body, absorbs all incident radiation, theoretical construct with some practical application. 
Also emits maximum possible radiation. Handwaving explanation: zero reflection at the interface. 

Defs: e is power emitted per unit area, eb is power emitted by black body per unit area, eλ is power per 
unit wavelength per unit area, eb,λ is power by black body per unit wavelength per unit area. 

Emission spectrum of black body: 
2πhc2λ−5 

eb,λ = ch 
kBλT − 1 

h is Planck’s constant, c is light speed, kB Boltzmann’s constant. Graph for different T . 
How to get eb? Integrate over all wavelengths. Fortunately, it’s quite simple: 

∞ 

eb = eb,λdλ = σT 4 

0 

The physicists must have jumped for joy when they saw that one. For our purposes, it puts radiation within 
reach of engineers. Okay, all done, never have to see that first equation again. 

Even better: 
2π5k4 W 

σ = B = 5.67 × 10−8 

15c2h3 m2 K4 · 
Note: fourthpower dependence on temperature means this is MUCH more important at high temperature 
than low temperature. 

New defs: emissivity �λ = eλ/eb,λ, the fraction of black body radiation which is emitted; absorptivity 
αλ = aλ/ab,λ. Cool result: �λ = αλ, always! Material property. Graph resulting emission spectrum. 

Grey body approximation: � = α = �λ = αλ = constant. Makes life a lot simpler for us engineers. 
Superpose grey spectra on previous graph. 

Resulting emission: e = �σT 4 . Pretty cool. Likewise average absorptivity α. 
Real materials: � = f (T ), α = f (incident spectrum). Example: global warming, CO2 absorbs in the 

infrared, admits sun in visible. 
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3.11 October 22, 2003: More Radiation 

Mechanics: 

CONGRATS TO ALBERT! • 

•	 Test stats first time around: 6286 within a std dev. But significant clustering, low 80s and low 60s. 

Problem Mean before Std. Dev. Max Mean after Std. dev Max 
1. 5 0 5 5 0 5 
2. 29.41 4.02 35 34.66 0.86 35 
3. 22.34 7.21 34 33.83 1.49 35 
4. 17.21 3.92 25 24.59 1.02 25 
Total 73.97 12.34 94 98.07 2.36 100 

“A” I consider around 80/89, because of statistics. Did well, 20%; not so well, only 20%. 

•	 Subra on bionano cell mechanics next Monday 4PM 10250. Recruiting... 

Muddy from last time: 

•	 Why is � a function of T ? Semiconductor example: silicon has band gap, absorbs some near infrared 
and in visible and higher energy (lower wavelength), very little in far infrared. So at low T , low �; at 
higher T (up to melting point), higher �. Note: can’t be heated by IR heat lamp. Also note: liquid 
silicon has zero band gap! 

Peak wavelength:

λmaxT = 2.9 × 10−3m · K


1000K, 2.9µm=2900 nm; sun at 5800K is at 500 nm (yellow)—need to be pretty hot to peak in the visible 
spectrum. 

Little table: 

Wavelength Total/average 
BB Emission eb = 

∞�eb,λdλeb,λ 0 
Actual emission e(= q) = 

0 
∞ 

eλdλeλ 

Emissivity �(T ) = e/eb�λ = eλ/eb,λ 

Absorptivity α(incident)αλ ≡ �λ 

Fortunately eb is quite simple: 
∞ 

eb = eb,λdλ = σT 4, σ = 5.67 × 10−8 W 
m2 K4 

0 · 

Grey approximation means we stick an average � in there. Note: fourthpower dependence on temperature 
means this is MUCH more important at high temperature than low temperature. 

Averaged properties: � = e/eb, α = a/incident. Note � will vary with temperature, α depends on 
wavelength of incident light. 

Radiation viewfactors So, the pointof radiative exchange: how much radiation emitted by surface 1 
reaches surface 2? Double integral: 

e1 cos θ1 cos θ2
Q12 =	 dA2dA1 

r2 
S1 S2 

A really ugly thing! 
Okay, but suppose A is at a uniform temperature, B also? Then can pull out eA, αB ; define F12: 

cos θ1 cos θ2
Q12 = e1 dAAdAB 

r2 
S1 S2 
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Q12 = e1A1F12 

F12 is only a function of the shape, not the size; is dimensionless. 
Viewfactor Algebra: two principles 

A1F12 = A2F21 

Prove from equal temperature. � 
nFji = 1 

i=1 

if they form an enclosure. Simple thing. With these two, can do complex stuff. Simple geom graphs on pp. 
396–398. Note: F11 = 0 if concave. 

For coaxial disks of same radius, graph F12 vs. d/r, values below.

Example: disk and cylinder section height d/4 to d/2 above, viewfactor for disks d/4 is 0.6, for d/2 is


A20.375. Derive F21 = 0.225 by enclosure arguments; F12 = A1 
F21 = F21 by this argument. 

Total exchange viewfactor: NOT COVERED THIS YEAR Reflection can be specular, diffuse. 
Here discuss diffuse. Suppose two grey bodies forming an enclosure, diffuse reflection at same cosine distri
bution. 

Q12,net = eb1�1A1F12(1 − �2)A2F21(1 − �1)A1F12etc. − eb2�2A2etc. 

Simplifies to: 

Q12,net = 1−�1 

eb1 − eb2 
1 + 1−�2+A1 �1 A1 F12 A2 �2 

Funny thing: like a sum of resistances. Funnier stil: multiple surfaces forming an enclosure ⇒ resistance 
diagram! 

New concept: zeroflux surface, wellinsulated, reflected+emitted�incident. In that case, no “current” 
through that resistor, can get the total from surface 1 to 2 bypassing surface R. Pretty cool! 

Total Exchange Viewfactor: F̄  
12, in this case 

1¯ A1F12 = A1F12 + 1 + 1 
A1 F1R A2 F2R 

Substitute that in instead of A1F12 in Q12,net equation above. 
Done with radiation, with heat transfer, on to fluids! 
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