Massachusetts Institute of Technology Department of Materials Science and Engineering 77 Massachusetts Avenue, Cambridge MA 02139-4307

3.21 Kinetics of Materials—Spring 2006

March 15, 2006

Lecture 13: Atomic Models for Diffusivities.

References

1. Balluffi, Allen, and Carter, Kinetics of Materials, Section 8.2.

2. Allen and Thomas, The Structure of Materials, Section 5.1.6, "Point Imperfections in Ionic Crystals."

Key Concepts

- The relation $D = \Gamma r^2 \mathbf{f}/6$ can be applied to various diffusion processes and the resulting expressions enable a more complete understanding of the dependence of D on temperature and other factors.
- The diffusivity of solute atoms by interstitial jumps in the b.c.c. structure is uncorrelated and the resulting expression for D takes the form $D_I = (a^2/6)\nu \exp(S^m/K) \exp[-H^m/(kT)]$.
- The vacancy diffusivity in the f.c.c. structure is uncorrelated and when the vacancies make nearestneighbor jumps the expression for D takes the form $D_V = a^2 \nu \exp(\frac{S_V^m}{K}) \exp[-\frac{H_V^m}{kT}]$.
- The self-diffusivity of a tracer atom in the f.c.c. structure by the vacancy mechanism involves jumps that can only occur when the tracer exchanges places with a neighboring vacancy. Thus, the vacancy concentration which at equilibrium is given by X_V = exp(S^f_V/K) exp[-H^f_V/(kT)] must enter the desired expression for *D. In addition, while the vacancy jumps will be uncorrelated, the tracer atom jumps will be correlated so the resulting expression for *D takes the form *D = fa²ν exp[(S^m_V + S^f_V)/K] exp[-(H^m_V + H^f_V)/(kT)]. Detailed analysis of the correlated jumping of the tracer atoms leads to the approximate expression f ≈ (z − 1)/(z + 1), where z is the coordination number for the crystal structure in which the tracers are jumping. A more complete analysis indicates that f ≈ 0.78 in f.c.c. crystals.
- The expressions for D written above all obey an Arrhenius law of the form $D = D^{\circ} \exp[-E/(kT)]$. Depending on the mechanism of diffusion, the activation energy E may have contributions from both defect migration and formation processes.
- The *isotope effect* refers to the small effect of mass of the diffusing species on diffusivity in tracer diffusion processes. For species of masses m₁ and m₂, *D₁/*D₂ = √m₂/m₁.
- Complexities of solute-atom diffusion by the vacancy mechanism in binary alloys can be appreciated with the *three-frequency model* for jumping, in which the vacancy jump rates may differ depending on whether the exchange is with the solute atom, a near-neighbor to the solute atom, or a more distant neighbor to the solute atom.

Related Exercises in Kinetics of Materials

Review Exercises 8.12-8.15, pp. 199-201.