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Lecture 7: Solutions to the Diffusion Equation—I. 

References 

1.	 Balluffi, Allen, and Carter, Kinetics of Materials, Sections 4.3–4.5. 

Key Concepts 

•	 When the diffusivity D is concentration-dependent, the diffusion equation is nonlinear and closed-
form solutions to practical problems don’t exist. The “Boltzmann–Matano” method is a graphical one 
for using a measured c(x) profile from a diffusion-couple experiment to determine D(c), using the 
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•	 Examination of asymmetry in an interdiffusion profile c(x) gives useful information about trends in 
the concentration dependence of D(c): D will be larger on the side with the shallower c(x) profile, 
and D will be smaller on the side with the steeper c(x) profile (see KoM Exercise 4.2). 

•	 When D is time dependent (e.g., when temperature changes occur during a diffusional process), a 
t ′ ′ 

simple approach using a time-weighted diffusivity defined by τD = 
�
0 

D(t ) dt allows Fick’s second 
law to be transformed into the alternate linear form ∂c = ∇2 

c. Familiar solution methods to solving 
∂τD 

the diffusion equation such as error functions and point sources can be readily adapted to cases where 
D is time dependent. 

•	 In crystals and other anisotropic materials, D is generally anisotropic. Because D relates two vectors, 
D is a second-rank tensor quantity. Note however that symmetry considerations dictate that for cubic 
crystals, D is isotropic. 

•	 The mathematical description of anisotropic diffusion depends on the choice of coordinate axes. Fre
quently, the most convenient choice is parallel to high-symmetry crystal axes. 

•	 When anisotropic diffusion is described in special coordinate axes termed principal axes, the diffu
sivity tensor is diagonal, and diffusive fluxes along each principal axes are effectively uncoupled. 

•	 Given a diffusivity tensor, finding its eigensystem (eigenvalues and eigenvectors) determines its prin
cipal axes and the prinicipal values of the diffusivity tensor along the diagonal in the principal axis 
coordinates. 

•	 Crystal symmetry dictates the form of the diffusivity tensor in the crystal axis system, i.e., where the 
non-zero terms will be, and which non-zero terms must be equal. 

•	 A scaling transformation, KoM Eq. 4.64, permits solutions for isotropic D to be readily adapted to 
cases in which D is anisotropic (see KoM Exercise 5.9). 

Related Exercises in Kinetics of Materials 

Review Exercises 4.1–4.8, pp. 91–97. 


