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Problem Set #3 
Due: Friday, March 21 by 5:00 PM 

1. Because metallic glasses have an amorphous atomic structure, many researchers believe they 
cannot “strain harden” like their crystalline counterparts (a topic we will cover in depth later). 
At present, you can understand this to mean that the stress required to continue deformation 
of the material to strains greater than the yield strain �(σy) increases monotonically, often 
modeled as a power-law of the form σ = K�n

p where �p is the plastic strain, n is the material 
strain hardening exponent, and K is a material constant related to σy. In other words, after 
yielding the material becomes “harder (i.e. more difficult) to strain.” Regardless of this 
assumption, you decide to have a UROP in your group conduct some experiments to consider 
whether strain hardening does occur in a particular metallic glass you have synthesized. You 
have the UROP compress a cylindrical sample of bulk metallic glass that is 6 mm long and 
3 mm in diameter to failure. After the tests, the UROP excitedly presents the data to you 
(which can be found in 3-1.xls ), claiming to have proven with these data that strain 
hardening in metallic glasses is possible! As she hyperventilates talking about the Nature 
article she wants to write, you realize that she is wrong (most likely because she did not have 
the opportunity to yet take 3.22). 

(a) Explain why she is wrong. Do this by calculating and discussing the σ − � response(s) 
and the strain hardening exponent n for the material. Compare your results with what is 
expected of a material that does strain harden. 

(b) Determine the elastic and plastic strain at failure. 

(c) Not one to give up easily, you think that you may be able to get the metallic glass to 
strain harden by applying a cyclic load (with the minimum load being 0 N) through the 
plastic region. Show what the resulting stress-strain curve would look like if you applied 
three cycles before failure. 

2. You are given a material and told that it is elastically isotropic and exhibits a yield strength σy 

of 950 MPa. The material is being used in an application where it experiences a stress state 
of
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(a) According to the von Mises and Tresca criteria, respectively, does the material yield? 

(b) Plot the yield surfaces (on the same graph) of the material based on the von Mises and 
Tresca criteria. 

(c) You decide to examine the material more closely by performing your own uniaxial ten­
sion and compression tests. The stress-strain data for these tests are found in 3-2.xls . 
Plot these data on the same graph as you made in (b). Discuss how the von Mises and 
Tresca criteria predict yielding in the material. Is there a better criterion to use for this 
material? Explain. 

3. Noting that the von Mises and Tresca criteria deviate for specific stress states in the yield 
surface considered above, determine the following: 
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(a) The stress tensor σij corresponding to the stress state(s) at which there is maximal dif­
ference between these two yield criteria, expressed as a matrix and as a representative 
volume element (RVE) of the material. This will correspond to the biggest gap(s) be­
tween these two predictions in the graphical yield surface. 

(b) The magnitude of this difference, expressed first in terms of an algebraic expression 
including the σy of the material and second in terms of a percentage basis [%]. 

(c)	 Which of these two criteria more accurately predicts the stress states corresponding to 
material yielding in pure metals and metallic alloys, and why does this tend to be the 
more accurate predictor? To answer this, you will need to rely on and show/cite experi­
mental data for selected materials. 

4. The yield strength σy of many materials is poorly described by von Mises and Tresca; these 
include porous materials, glassy polymers, granular media, and biological materials. For such 
materials, σy depends in part on the state of hydrostatic stress σii and thus the first invariant 
of σij , I1. Here, you will explore some of these pressure-sensitive yield criteria. 

(a) Mohr and Coulomb discussed continuum mechanics and particle interactions, respec­
tively. Their ideas enabled modification of the yield criteria to reflect the fact that σy 

may differ in uniaxial tension vs. compression. This criterion is commonly used for 
bulk metallic glass and soils, which fail at lower applied stresses in tension than in com­
pression. It linearly relates the effect of superposed normal and shear stresses on the 
stress state required to yield the material, and Mohr’s circle helps us easily understand 
this. Assume an imposed principal stress state in a material plane; Mohr-Coulomb ex­
presses the yield criteria in terms of the stress state at maximal shear stress resulting 
from σ1 and σ3, and can be expressed as the material yielding when: 

τ =< σ > sin α	 (1) 

where < σ > is the average normal stress corresponding to τ , and (τ,< σ >) is the 
coordinate on Mohr’s circle defined at the point of max shear stress for defined σ1 > 0 
and σ3 > 0, and α is the friction angle. Physically, α is the angle that would naturally 
arise if you poured the granular material onto a surface due to friction between the 
particles, and is usually between 15o and 50o. In terms of Mohr’s circle, it is the angle 
between the vertical line connecting (τ,< σ >) to the τ = 0 horizontal axis, and the 
tangent of the circle that intersects the point (τ = 0, σ = 0). Draw this Mohr’s circle, 
and restate the Mohr-Coulomb yield criterion only in terms of these normal principal 
stresses and the material friction angle. 

(b) Drucker and Prager developed the creatively named Drucker-Prager yield criterion orig­
inally for soil mechanics and it is often applied to composite materials such as cement 
or concrete. It accounts for normal and shear stresses, and can be stated as: 

f = J2 − αI1 − k	 (2) 

where J2 is the second invariant of the deviatoric stress tensor sij and α and k are mate­
rial properties that reflect the friction angle and cohesion, respectively. When f reaches 
a critical value corresponding to yielding under a uniaxial stress state, the material will 
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yield. Express f in terms of the stresses σij that define I1 and J2, and determine the 
value of f(α, k) that corresponds to yielding under an applied uniaxial stress state. 

(c) Mohr-Coulomb and Drucker-Prager are similar in relation to each other as Tresca and 
von Mises. Both account for superposed normal and shear stresses, but one is more 
conservative than the other. Graphically represent the M-C and D-P yield locii on the 
same σ1/σy vs. σ2/σy graph, and state why one is more conservative than the other in 
predicting yielding of pressure-sensitive materials. 

5. Material stiffness and strength are very different properties attributed to very different atom­
istic mechanisms. In 60 words or less (think elevator conversation), clearly and accurately 
state the difference between these two concepts in a way that should be perfectly clear to any 
engineer, physicist, or chemist. 

6. We have discussed that dislocations move in response to shear stresses less than the theoretical 
shear strength of a crystal, and that the motion of each dislocation contributes unit slip of 
magnitude |b|. 

(a) Express the plastic shear strain γp that would result from a single edge dislocation glid­
ing along its slip plane all the way to the free surface. Here, consider a rectangular 
single crystal block of height h, width across the page w and depth into the page L; first 
express γp(b, h) and then express γp(A, V ) where A is the glide plane area and V is the 
volume of the block. 

(b) Now consider a single edge dislocation in the center of the perfect rectangular-prism 
box, gliding by an incremental slip inside the block dx. Express the incremental shear 
strain dγp in terms of b, L, dx and V . 

(c) Now consider the case of n dislocations, and express this incremental shear strain in 
terms of dislocation density ρ (which is always defined as total dislocation line length 
per unit volume of material), b and the incremental slip dx. 

(d) Finally, express the time derivative of dγp in terms of the time derivative of displace­
ment dx/dt. You will have derived the Orowan equation, which predicts the plastic 
shear strain rate possible in a material of known dislocation density, Burgers vector, and 
dislocation velocity v. 

(e) Assume dislocation velocity is equivalent to the speed of sound in Cu, and determine 
the plastic shear strain rate magnitude for annealed, single crystal Cu. 

7. Complete PS3 wiki questions with your Special Topic colleagues. 
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