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Problem Set #2 
Due: Tuesday, March 4 by 5:00 PM 

1. You did such an outstanding job in the engineering department at Unique Unicycles that they 
gave you a promotion to the R&D department. Your first assignment there is to study a new 
material developed by your competitors Un-Unique Unicycles. The material is a compos­
ite composed of unidirectional fibers in a polymer matrix (Fig. 1). While another research 
scientists determines what the fibers and matrix are, your boss Dr. Van Vliet asks you to 
determine the stiffness tensor components for such a structure in terms of Young’s Modulus 
and Poisson’s ratio. 

y

x z

Figure 1: A composite material comprised of unidirectional fibers in a matrix. 

Solution: From Fig. 1 we see that there is some symmetry to this structure. In particular, it 
is composed of three orthogonal axes with four-fold rotational symmetry along the x axis and 
two-fold rotational symmetry along the y and z axes. Therefore this structure is tetragonal 
and has six independent elastic constants. 

Consider the strain if the composite is loaded by a force F along the x axis (which I will 
refer to as the 1-direction). If the fiber and the matrix are well bonded, they experience the 
same strain such that 

�11 = �M11 = �F11 

where �11, �M11, and �F11 is the strain in the composite, matrix and fiber, respectively. 

However, the resulting stress in the fibers is different because of the different Young’s moduli 
in the fibers and matrix. (Note that because we know nothing of the fiber or matrix mi­
crostructures we are treating them as isotropic.) The stress in the fiber σF11 and matrix σM11 

are therefore 
σF11 = EF�11 and σM11EM�11 

where EM and EF are the Young’s moduli of the matrix and fiber, respectively. 

The total applied force must be in equilibrium with the total force due to the stresses in the 
fiber and matrix. The internal force is given by multiplying the stress by the area of the fiber 
or matrix it acts on. If the total cross-sectional area of the composite is A, then the cross-
sectional area of the fibers and matrix are given by the total area multiplied by the volume 
fraction of fiber or matrix. Thus the force acting on the fibers and matrix is given by 

F11 = VFAσF + VMAσM 
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Substituting our definitions of strain and dividing by A gives 

σ11 = (VFEF + VMEM)�11 

From this equation, we can see that the modulus of the composite along the x axis E1 is 

E11 = VFEF + VMEM 

Now consider if the composite is loaded along the y axis (which I will refer to as the 2­
direction). The fibers and matrix will experience different strains. The total strain �2 will be 
the sum of the strain in each component (multiplied by the volume fraction) such that 

�22 = VF�22F + VM�22M 

The stress applied σ will be distributed equally over both the fibers and matrix and therefore 
we can write 

σVF σVM
�22 = + 

EF EM 

From this equation, we see that the modulus along the y axis E2 is 

EFEM
E22 = 

VMEF + VFEM 

Futhermore, because the “unit cell” of the composite is the same along the y and z direction 
(e.g. the composite has a tetragonal structure), E22 = E33. 

We can also do a similar analysis to determine the shear moduli G12 and find 

GFGM
G12 = 

VMGF + VFGM 

where GM and GF are the shear moduli of the matrix and fibers, respectively. Again because 
of symmetry, we know that G12 = G13. 

For the shear modulus G23, we know that the yz plane (or 23 plane) is an isotropic plane. 
Therefore 

E22
G23 = 

2(1 + ν23)


where ν23 is Poisson’s ratio that relates the strain in the 2 and 3 direction.


There will also be other Poisson effects in the composite. For example, the �22 and �33 will be 
equal to −ν12�11 for an applied strain �11 = σ11 . (Note that because of symmetry ν12 = ν13.)E11 
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With all of this information, we can begin to construct a compliance tensor for the composite


Sij = 

1 ν12 ν12 0 0 0E11 
−E

1 
11 

−E11 

− ν12 − ν23 0 0 0E22 E22 E22 

− ν12 − ν23 1 0 0 0E22 E22 E22 

0 0 
0 0 0 0


0 1 0 0G23 
1 

G12 
0


0 0 0 0 0 1 
G12 

Note the factors of two in S44, S55 and S66. These are a consequence of converting from 
mathematical strain to engineering strain. 

With the exception of our Poisson ratios, the other terms in this tensor are in terms of the 
component properties and volumes. Let us now do this for the Poisson ratios. 

Consider a sample section of the composite (Fig. 2) with a stress applied along the x axis. 
The sum of the change in length of the fibers (δF) and matrix (δM) in the y direction will equal 
the change in length of the composite (δC) along this direction. We can write these changes 
as 

δF = tF�22F = −tFνF�11F 

δM = tM�22M = −tMνM�11M 

δC = tC�22 = −tCν12�11 

We know that along the x axis, �11F = �11M = �11 and therefore 

tCν12 = tFνF + tMνM 

or 

tF tM
ν12 = νF + νM 

tC tC


= VFνF + VMνM


Once again, because of symmetry ν12 = ν13 as we have implied already in writing the com­
pliance tensor as we did. 

The Poisson ratio for the isotropic plane ν23 is a little more complicated but if similar princi­
ples are used, we find 

VMνMEF + VFνFEM
ν23 = 

VFEM + VMEF 
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With all the composites elastic constants now defined in terms of the volume fraction, Young’s 
moduli, shear moduli, and Poisson’s ratios of the matrix and fiber, we can compute the stiff­
ness tensor Cij by taking the inversion of the compliance tensor Sij. This can be done by 
hand, but would be more easily done using some mathematical software such as Mathematica 
or Maple. As you have found, the inversion is a large messy matrix which I will not present. 

Fiber

Matrix

tF

tM

y,2

X,1

Figure 2: A sample section of the composite. 

2. Two isotropic materials (A & B) are being considered for use in shoe insoles. When used 
as insoles the average strain with respect to time �(t) of the materials is that presented in the 

plied stress. 
Plot the result of your model along with the given data. 

Solution: Material A has an immediate response to the stress and strain is constant 
with time. We recognize this behavior as characteristic of a linear elastic solid. An 
appropriate model for its stress/strain behavior is therefore Hooke’s Law (� = σ/E). 

For Material B, we see that there is an instantaneous response with the applied stress 
followed by a strain that is dependent on time. This appears to be a linear viscoelas­
tic material. The constitutive models we have for these materials include the Maxwell 
Solid, Kelvin/Voight Solid, and Standard Linear Solid. We can eliminate the Maxwell 
Solid because it cannot very accurately predict this type of strain response with time, as 
discussed in lecture. 

The solution to the Kelvin/Voight model is 

� = 
σ ◦ 1 − exp 

−t 
E τ 

where σ is the initial stress, E is the Young’s modulus, t is the time, and τ is the re­◦
laxation time. If we plot this with our data for Material B (Fig. 3), we see that we can 
accurately predict the strain at later times, but not at earlier times especially the instan­
taneous strain we observe at t = 0 s. We therefore must consider another model. 

Because the Maxwell Solid can accurately model instantaneous strains, how about a 
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spreadsheet posted on the MIT Server (2-2.xls).

(a) Derive a model that accurately describes each material’s response to the ap



� = = + 

� � � � 

Standard Linear Solid that is a combination of the Maxwell and Kelvin/Voight Solids? 
From the Maxwell Solid and Kelvin/Voight Solid we have 

1 1 dσ d� 
σ + = 

3η E dt dt 

and 
d� 

σ = E� + 3η 
dt 

respectively. Taking the best parts of these two equations, we write an equation of the 
form 

dσ d� 
σ + τ� = ER(� + τσdt dt 

where τ� and τσ are the relaxation times for fixed strain and stress, respectively, and ER 

is the relaxed modulus. To understand ER, look at the physical model of this system in 
Fig. 4. In this system, as time goes to infinity, 

σ σ σ 
ER E1 E2 

or 
1 1 1 

= + 
ER E1 E2


where E1 and E2 are the respective moduli of the two springs.


Now imagine that a stress σ is applied and held constant (as is the case in our problem). ◦
Our equation for this model becomes 

d� 
σ = ER(� + τσ◦ dt 

Integrating this equation from strain � to � and time 0 to t yields◦ 

� = 
σ ◦ + �

σ ◦ exp 
−t 

ER 
◦ − 

ER τσ 

Using this equation, we are able to fit the data perfectly (Fig. 3) finding τ = 2 s and 
σ /ER = 0.153. ◦

(b) Characterize these materials, focusing on their elastic moduli and the relaxation time. 
Without having handled the materials, what class would each fall into? 

Solution: Using our models, we know we can calculate the moduli of the two mate­
rials as long as we know the strain and stress. The strain is given to us from our data. 
The stress we will estimate based on the weight of a person and the “cross-sectional” 
area of a foot. For my estimations, I assumed a 170 lb. (∼700 N) person and for sim­
plicity treated a leg as a rod with a three inch diameter. 

Because Material A is a linear elastic solid, its Young’s modulus can be calculated 
from Hooke’s Law. Doing so, we fine EA = 40 GPa. The Young’s Modulus for Material 

3.22 Mechanical Behavior of Materials 5 Prof. K.J. Van Vliet 



0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

St
ra

in

14121086420

Time (s)

 Material B
 Voight/Kelvin
 Standard Linear Solid

 

Figure 3: Strain as a function of time in Material B. Also plotted are the results given by the 
Voight/Kelvin Solid and Standard Linear Elastic Solid models. 

E1 E2

Figure 4: A physical model of a Standard Linear Elastic Solid. 

B is obtained from our model. At t = 0 s, the strain � is equal to the instantaneous 
strain � . Using the values we are given, we can solve for E in the same way we did for ◦
Material A to find EB=4 GPa. (Note that depending how you defined your stress, you 
may get very different answers.) 

The relaxtion time τ for Material A is zero because it is a linear elastic solid and reach 
maximum strain instantaneously. The relaxation time for Material B was determined to 
be τ = 2 s when we fitted the data. 

Based on the moduli and strain behavior of these materials, we can categorize Ma­
terial A as a linear elastic solid that is most likely a metal and Material B as a linear 
viscoelastic solid such as a polymer. 

(c) Which material is better suited for the job? Explain by showing the σ(t) (given that you 
take a step every second) and the resulting strain for each material. Define a quantity for 
judging the effectiveness of each material in this application. What would this quantity 
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be for a material ideally suited for this application? 

Solution: We can model the stress applied in one foot while we are walking as a sine 
wave such that 

σ = σ sin ωt ◦ 

where ω is the angular frequency. In a linear elastic solid, such as Material A, the 
strain would mirror the strain (with a reduced magnitude equal to the stress divided by 
the modulus) because the response is instantaneous. It can therefore be written as 

� = � sin ωt. ◦ 

What about the strain in Material B? Using a sine wave complicates the problem in 
this situation, so let’s model our steps as a block wave. This means that the material 
is loaded at a constant stress σ for a time t = 1 s. If we look at our strain data for ◦
Material B from t = 0 to 1 s (you should plot it in smaller time steps than 0.5 s to better 
resolve this), we see that the strain instantaneously increases to � before increasing ◦
nearly linearly with time. 

When the stress is removed (e.g. you step with the other foot), the material will in­
stantly recover � and then recover all the remaining strain over the next second (the ◦
time to take the other step). 
So what metric can we use in determining each material’s utility in shoe insoles? Con­
tinuing with our block wave approximation, let’s plot the stress versus strain in each 
material for one step (Fig. 5). Material A reversibly follows a line between the origin 
and (σ , � ) while Material B follows a circuit. The energy dissipated in this circuit is ◦ ◦
just the area inside the circuit. For Material A, this energy is zero, so clearly Material B 
is better suited for use in shoe insoles because it can dissipate some of the energy from 
walking. 

Ideally the perfect material for an insole would dissipate as much energy as possible. 
Since σ is set within the range of a human’s weight, to do this we would want the mate­◦
rial to reach maximum strain � in the time it takes to take one step. The material must ∞
also be able to fully recover the strain in the same amount of time. 

(d) A similar concept can be applied to measure the natural frequency of molecular chain 
rotation at the glass transition temperature of a polymer. Explain how you do this ex­
perimentally and the results you would expect. 

Solution: At the glass transition temperature in polymer there is a large increase in 
the free volume, allowing for molecular motion to occur more easily. When a frequency 
similar to the natural frequency of the molecular chain rotation is applied, (nearly) 
complete damping will occur. If the applied frequency is too high, the chains will have 
insufficient time to move and the polymer will seem stiff. If the applied frequency is too 
low, the chains will have more time to move and the polymer will seem soft. 
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Figure 5: A schematic of the stress-strain behavior in a linear elastic and linear viscoelastic solid. 

3. You are responsible for performing uniaxial tensile tests on three very different materials: 
a 316 stainless steel alloy, alumina (Al2O3), and high density polyethylene (HDPE). How­
ever, before performing the actual tests, you are asked to predict the elastic stress vs. strain 
responses of each of the materials based on the mechanical properties of these materials doc­
umented in the literature (e.g., material property databases such as matweb.com, linked on 

(a) Graph the engineering and true stress (MPa) versus engineering and true strain (%) 
response for all three materials on a single graph, up to an applied engineering strain 
value of .01 (or 1%) in strain increments of 0.0005. 

Solution: The Young’s elastic moduli for these materials are approximately 210 GPa 
(steel); 370 GPa (alumina); and 1 GPa (HDPE); data source = matweb.com.Graphically, 
we need only plot the stress-strain response with these values as the slope. There is no 
measureable difference between the true and engineering stress and strain during purely 
elastic deformation, though technically the Poisson’s effect does slightly decrease the 
cross-sectional area from which the true stress is calculated. 

(b) Remark on the differences in behaviors seen for each of the three materials as related to 
their relevant mechanical properties. Also, looking at the magnitude of the stresses at 
the maximum applied strain, do you expect all of these materials to deform elastically 
up to these strains? If not, what was the fallacy in solely using Hooke’s law to predict 
the stress-strain behaviors for each of the materials? 

Solution: The requested maximum strain of 0.01 would induce the following stress mag­
nitudes: 2.1 GPa (stainless steel); 3.7 GPa (alumina); 10 MPa (HDPE). The reasons for 
the differences among the values of E and the corresponding stress generated are at­
tributable to the resistance to bond stretching in metal alloys (nondirectional) vs. oxides 
(ionic/covalent) and to organic polymer chain displacement (HDPE). At these levels of 
stress, the stainless steel would no longer behave elastically (yield stress at which plas­
ticity commences is approximately 1 GPa); the alumina would fracture (tensile fracture 
stress is 0.3 GPa, and compressive fracture stress is 3 GPa); and the HDPE would 
likely plastically deform (tensile yield stress is on order of 10 MPa). The fallacy is that 
Hooke’s Law cannot be assumed for any arbitrary strain level; it applied only in a stress 
state that corresponds to a state of elastic (reversible) deformation. 
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(c) All three samples were given to you as cylinders with identical initial dimensions of 10 
cm length and 2 cm diameter. Show whether a uniaxial load frame of maximum load 
capability = 100 kN (standard capabilities of load frames such as Instrons available at 
MIT) will be sufficient to deform all three materials to the requested engineering normal 
strain of 1%. Here, neglect the possibility that the materials might not remain intact (all 
in one piece) to that applied strain. 
Solution: The initial cross-sectional area of the cylinder is 

Ao = πr2 = 3.14x10−4 m 2 (1) 

If we neglect the above consideration that the material may yield or fracture at a strain 
of 0.01, we can compute the required force as F = σxAo. This would correspond to a 
required force of 6.6 x 105 N (stainless steel); 1.2 x 105 N (alumina); and 3.1 x 103 N. 
As 100 kN = 1 x 105 N, it is clear that such a load cell could only deform the HDPE, but 
not the SS or alumina. Luckily for us, none of these materials behave linearly elastic 
manner up to these strains. 

4. Atomic interactions can be modeled using a variety of potential energy approximations. One 
very common potential form is the Lennard-Jones 6:12 potential: 

U(r) = 4�[(σ/r)12 − (σ/r)6] 

where � and σ are constants specific to a given material (note: these terms are NOT equivalent 
to stress and strain, but this is the standard notation for the L-J parameters). Here, r is the 
interatomic spacing given in units of Angstroms, and U(r) is given in units of eV atom−1 . 
A molecular dynamics simulation was performed by Zhang and coworkers [1] to study the 
properties of Al thin films in which the authors proposed a Lennard-Jones potential of the 
form above to model Al-Al interactions. The values used for the material parameters were: 
� = 0.368 and σ = 2.548 (we’ve rounded off the values in the paper for your problem set). 

(a) What are the assumed units of � and σ in Zhang and coworkers’ potential for aluminum? 
Solution: As discussed in class, � must have units of energy in [kJ/mol] or [eV/atom]; 
and σ must have units of [m]. 

(b) Using the given material parameters and the form of the interatomic potential energy 
curve, plot U(r) for aluminum from r = 0 to 3.5 Angstroms in increments of < 
0.25 Angstroms. 
Solution: Using Excel, the following plot of U(r) was generated. The scale of the x-axis 
was set so that it ranged from 2.25 to 4 angstroms, while the scale of the y-axis was set 
so that it ranged from -0.4 to 1eV in increments of 0.2 eV. This is much less preferable 
to graphing in Mathematica, MATLAB, or Maple! 

(c) Determine the equation for and graph the interatomic forces F as a function of inter­
atomic separation r for Al over the same range of r used in part (a), indicating units of 
F (r). Also, analytically and graphically determine the equilibrium interatomic spacing, 
ro. Mark this point on both the graphs produced in parts (a) and (b). 
Solution: The interatomic forces between atoms can be determined from the interatomic 
potential energy function given the relationship: F = dU/dr. Taking the derivative of the 
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F = −24�{2(σ12/r13 − σ6/r7 (2) 

This function is then plotted for the same range of r values used in part (a) to obtain 
The equilibrium interatomic spacing can be determined by setting F(r) equal to zero 
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and solving for r (this can be easily done using a computer program or a graphing 
calculator). Doing this, one obtains an equilibrium interatomic spacing of ro=2.86 
Angstroms (0.286 nm). This point is marked as a red dot on both the graphs for parts 
(a) and (b). Notice that the equilibrium interatomic spacing corresponds to the minimum 
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point on the potential energy curve U(r), whereas this corresponds to the zero point on 
the interatomic force curve F(r). 

(d) Compare this equilibrium interatomic spacing to the literature value of atomic radius 
for aluminum, and from that comparison explain what you think Zhang and coworkers 
assumed in choosing the constants � and σ that made ro come out this way. 
Solution: This is exactly twice the atomic radius of Al (0.143 nm). Zhang et al. actually 
chose the LJ constants so that this equilibrium interatomic spacing would reflect the 
interatomic distances in the close-packed or ¡110¿ direction of this fcc metal. 

(e) Figure 6 shows interatomic energy curves [V (r) is equivalent to our U(r)] for Mg that 
were calculated by Chavarria [2] (squares) and McMahan and coworkers [3] (dotted 
and solid curve). These data are shown in arbitrary units (a.u.) which is typical of 
computational/experimental results that have funny units peculiar to the computational 
programming units, but r turns out to be expressed in ∼ 2 × Angstroms (i.e., 9 a.u. = 
4.5 Angstroms). Comparing these curves with that calculated in part (a) for Al, explain 
whether you would expect magnesium to have a lower or higher elastic modulus than 
aluminum? Is this confirmed by the literature values of elastic properties and physical 
properties of Al and Mg? 
Solution: From consideration of the atomistic basis for linear (small strain) elasticity 
we derived the following relationship in class, E = dU /dr2/ro, where the term in the 
numerator represents the curvature of the interatomic potential energy curve at r = 
ro, and the term in the denominator represents the interatomic equilibrium spacing. 
Thus, if and only if we assume the U(r) of two materials had the same curvature at 
the energy minimum, we see that a larger equilibrium interatomic spacing leads to a 
smaller elastic (or Youngs) modulus. Since magnesium is seen to have an equilibrium 
interatomic spacing of about 3 Angstroms (0.32 nm) which is larger that calculated 
for aluminum ( ro =2.8 A or 0.28 nm), we would expect magnesium to have a smaller 
elastic modulus (i.e., magnesium is more compliant than aluminum). The increase in 
equilibrium interatomic spacing can be attributed to the fact that Mg has a much lower 
density compared to Al, which in turn means larger interatomic separations between 
atoms. In fact, if we look up the actual values for Youngs modulus using MatWeb we 
find the moduli of aluminum and magnesium to be 68 GPa and 44 GPa, respectively. 
This is a pretty significant difference for two elements which lie right next to each other 
on the periodic table and have essentially the same melting temperatures!!! 

(f) Again, considering the relationship between the Young’s modulus, the equilibrium in­
teratomic spacing, and U(r) curvature, what effect do you think temperature has on the 
measured Young’s modulus? Provide a conceptual explanation of your answer. (Hint: 
Think about what happens to atoms inside of a material as you heat it up.) 
Solution: As temperature increases, atomic vibrations are caused which cause the equi­
librium spacing between atoms to increase. Since the Youngs modulus decreases with 
increasing equilibrium spacing, an increase in temperature causes the elastic modulus 
to decrease. To see this another way, we can also note that the modulus is proportional 
to the slope of the interatomic force, F(r), curve. Taking our calculated F(r) graph for 
aluminum, we see that if we move our original equilibrium spacing from ro=2.86 A to a 
higher value (lets say ro’= 3.1 A), the slope of the curve greatly decreases which repre­
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Figure 6: Interatomic potential for magnesium as calculated by Chavarria [2] (squares) and McMa­
han and coworkers [3] (dotted and solid curves). 

sents a decrease in the elastic modulus. Additionally, the atoms will vibrate more about 
this ro, which means that the curvature at the bottom of the U(r) well will be decreased 
(the well gets wider), so the 2nd derivative of U(r), which is directly proportional to 
E, will decrease. Physically, the resistance to bond stretching decreases as the well 
curvature decreases. 

Refs: 
1. H. Zhang and Z. N. Xia, Nuclear Instruments & Methods in Physics Research Section B: 
Beam Interactions with Materials and Atoms, 160 (2000) 372-376. 
2. G. R. Chavarria, Physics Letters A, 336 (2005) 210-215. 
3. A. K. McMahan and J. A. Moriarty, Physical Review B, 27 (1983) 3235-3251. 

5. The Worm Like Chain (WLC) model of rubber elasticity has been used to analyze the de­
formation of DNA under uniaxial loading. Bouchiat and coworkers used magnetic tweezers 
to extend lambda-DNA (λ-DNA) and applied the WLC model to infer its structure and re­
sistance to bending. Table 1 is a subset of the experimental data Bouchiat and coworkers 
reported, with additional points (Bouchiat et al.,Biophys J. (1999) Fig. 2). Apply the WLC 
model to determine the following: 

(a) Graph these experimentally measured data as force on the chain vs. stretch of the chain, 
Fc vs. λc = r/r where r is the distance between chain ends before force is applied, ◦ ◦
and indicate the region over which the experimentally measured data is fit reasonably 
well by the WLC model. 

Solution: One could note the values of Lp and Lc from the authors’ fit to these data, 
and/or obtained your own fit to these data by executing a fit with these values as initial 
guesses of Lp and Lc. The better your “starting guess” for these values, the closer your 
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Table 1: A subset of the experimental data Bouchiat and coworkers reported, with additional points 
(Bouchiat et al.,Biophys J. (1999) Fig. 2) 

Applied force Extension r

F (pN) (µm)


0.05 5.6 
0.085 7.5 
0.18 10.1 
0.5 12.3 
2.0 14.0 
9.0 15.0 

fit will approximate the authors’. The solution below assumes ignorance of Lc and Lp, 
and compares the values obtained with that of the authors. Note that, in practice, Lc 

can actually be calculated from knowledge of the structure of a polymer chain; Lp can 
only be estimated from experiments like this one, or from measurements of the lengths 
over which thermal fluctuations of the chain are uncorrelated in space and time. (We 
did not cover the latter approach in class, but it is consistent with the definition of Lp 

that we discussed in class.) 

The WLC model covered in class assumes a Gaussian distribution of chain end-end 
distances r, and thus predicts a fairly linear relationship between F and r. This linear 
relationship is observed only true for the low extension region and the high extension re­
gion, as the experimental data is highly nonlinear in between. The Gaussian assumption 
holds best in the low-extension region, however, because it is in this region that there is a 
”normal” distribution of chain end-end distances, unbiased by the application of force 
to these chains. For these data, the limit of a reasonable linear fit to the low extension 
data is at about the third data point, or F = 0.18 pN and r= 10 µm. 

Note that this fit was achieved by identifying the values of Lc and Lp that minimized the 
error between the WLC-predicted force and the experimental value of force over these 
three points (Lc = 8.6 µm; Lp = 25.6 nm) for kB = 1.38x10−23 J/K and T = 298 K 
(room temp). As this was linear, the value of r was then identified via linear extrap­◦
olation (r = 1.95 µm). This is an interesting deviation from our prediction that the ◦
force = 0 when r = 0, because although the time-space average value of r = 0 (if there 
is a statistical distribution of r), r was not equal to zero at the instant sampled by this 
experiment; the DNA chain ends were about 1 micron apart. Strictly speaking, r = 0 
should be defined to either mean < r >= 0, the time-averaged, Gaussian value of most 
likely chain end-end distance in the absence of applied force; or as dr = 0, where dr is 
the change in chain end-end distance. 

(b) The number of nucleotides in this λ-DNA. 

Solution: The number of nucleotides that comprise this DNA is governed by the con­
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tour length or fully extended length of this DNA sample. According to the above WLC 
fit to the low- extension region of the F-r response, Lc = 8.6 µm. We know right away 
that this is a poor estimate of Lc due to the Gaussian distribution P(r, n)dr, because the 
WLC force should tend toward infinity as r = Lc, and the experimental data indicates 
that this occurs at about 15 µm. Visually, the data indicate that Lc ∼ 15 m. 

The number of nucleotides in this polynucleotide is then equal to the number that can fit 
in this length; if we assume this is single stranded DNA, we divide Lc by the size of one 
nucleotide, and if we assume this is double stranded DNA, wed multiply that answer by 
two (2 nucleotides in one basepair). Youd need to check out the paper to be sure (as I 
didnt give you that information in the problem). 

The length of a single nucleotide (and, for that matter, a single basepair) is 0.33 nm 
[Mandelkern M, Elias J, Eden D, Crothers D (1981). ”The dimensions of DNA in solu­
tion”. J Mol Biol 152 (1): 15361.] 

Thus, the number of nucleotides in ssDNA would be 8600 nm/0.33 nm = 26,060 nu­
cleotides; the number in dsDNA would be 52,121 nucleotides or 26,060 basepairs (bp). 

Note that this is in contrast to the estimates from the authors of the paper, as they as­
sumed the nonlinear form of the WLC model and found from their fit that Lc = 15.6 µm 
(which gives 47,272 nucleotides (for ssDNA); or 94,545 nucleotides or 47,272 basepairs 
(for dsDNA). 

(c) The number of nucleotides that comprise a segment of the DNA that is significantly 
resistant to bending. 

Solution: This length is equivalent to the persistence length Lp, which my fit in (a) deter­
mined to be 25.6 nm. The number of nucleotides in ssDNA would be 25.6 nm/0.33 nm = 77 nucleotides 
(rounding down to integer values), and would be 155 nucleotides in a dsDNA segment. 
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Contrast this with the authors estimate: Lp = 51 nm 154 nucleotides for ssDNA; again, 
we underestimate by a factor of two by fitting to only the Gaussian/low extension region. 

(d) The effective entropic spring constant of λ-DNA, ks. Note that this is often defined as 
the resistance to extension at large forces – why is this? Compare your value to that 
stated by the Bouchiat and coworkers, and explain why they expressed this stiffness in 
units of [N] instead of [N m−1]. 

Solution: Although we could define the spring constant as the slope of the linear region 
in the low-extension region, the forces are so low in this region that they are essentially 
at the limit of measurable forces with existing instrumentation. As a result, there is a 
tendency to use more reliable data at higher forces/extensions. The entropic spring con­
stant or slope to my fit shown in (a) is 2 × 10−8 N/m. 

At low forces/extensions, the linear term r/Lc dominates; at high forces/extensions, 
though, note that the quadratic term in our WLC equation dominates, or F ∼ kT/Lp[4(1r/Lc)]−
2, which can be rewritten as [F/(kT/Lp)] − 1/2 = 4(1r/Lc), where you can see that 
the LHS of the equality is unitless [N * m / N-m/K * K] and the units on the RHS of 
the equality are also unitless [m/m]. Thus, one can obtain Lp and Lc via a linear fit 
to these data so plotted. Smith/Bustamante did this to demonstrate the linearity of the 
relationship at high force, and as a check on their fit. If one plots force [N] vs. extension 
ratio r/ro or as r/Lc [m/m], the slope to the linear portion of this response, k, is in units 
of only [N], not [N/m]. This is often presented as such to compare the effective stiffness 
of chains of different contour length Lc. 

To compare with Bouchiat et al.s estimate of k (1.3 pN, stated on the graph), we could 
multiply our k by our Lc, so k = 2E(-8) N/m*8.6E(-6) m =1.72E(-13) N = 0.172 pN. 
Our fit to the low-extension region underestimates their k by an order of magnitude, but 
of course wed expect that because we can visually see in (a) that the rate of change of F 
vs. r is much greater at large forces/extensions (and, also, our Lc is 2x too small like 
the Grinchs heart). 

(e) The minimal force required to break the phosphate ester bonds that join nucleotides in 
DNA? 

Solution: Here, we know that the force applied up to the contour length Lc only serves 
to uncoil the coiled DNA, and no force is transferred to the primary bonds like the 
phosphate ester bonds. The force required to load and break these primary bonds 
must be greater than the force required to achieve the fully extended polynucleotide, 
so Fmin = F (r = Lc) or 10 pN. 

(f) The stretch λc = r/r at which the WLC prediction diverges from that of the Freely ◦
Jointed Chain (FJC) model, by graphing the FJC prediction on the graph in (a), and the 
reasons for this divergence. 

Solution: Here, both WLC and FJC predict a linear relation between F and r, so 
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both only fit reasonably well to the first few points given in the experimental data ta­
ble. Below, the best fit of the FJC equation to these 3 points is given in orange (where 
Lc = 10 µm and b = 92 nm). The WLC and FJC diverge from each other for increas­
ing extension, r. Mathematically, this is because the quadratic r/Lc term in the WLC 
equation dominates. Physically, this is because the WLC incorporates the resistance to 
segment BENDING and ROTATION that the FJC model disallows (all segments rigid 
and straight over length b, between frictionless joints). 
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