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Problem Set #3 
Due: Friday, March 21 by 5:00 PM 

1. Because metallic glasses have an amorphous atomic structure, many researchers believe they 
cannot “strain harden” like their crystalline counterparts (a topic we will cover in depth later). 
At present, you can understand this to mean that the stress required to continue deformation 
of the material to strains greater than the yield strain �(σy) increases monotonically, often 
modeled as a power-law of the form σ = K�n

p where �p is the plastic strain, n is the material 
strain hardening exponent, and K is a material constant related to σy. In other words, after 
yielding the material becomes “harder (i.e. more difficult) to strain.” Regardless of this 
assumption, you decide to have a UROP in your group conduct some experiments to consider 
whether strain hardening does occur in a particular metallic glass you have synthesized. You 
have the UROP compress a cylindrical sample of bulk metallic glass that is 6 mm long and 
3 mm in diameter to failure. After the tests, the UROP excitedly presents the data to you 
(which can be found in ), claiming to have proven with these data that strain 
hardening in metallic glasses is possible! As she hyperventilates talking about the Nature 
article she wants to write, you realize that she is wrong (most likely because she did not have 
the opportunity to yet take 3.22). 

(a) Explain why she is wrong. Do this by calculating and discussing the σ − � response(s) 
and the strain hardening exponent n for the material. Compare your results with what is 
expected of a material that does strain harden. 

Solution: We can plot these data as engineering and true stress strain. Engineering 
stress σe and strain �e can be easily calculated from the given data using the initial 
cross-sectional area A and length l of the specimen such that ◦ ◦ 

P 
σe = 

A 

�e = 

◦ 

−d 
l ◦ 

where d is the displacement. The true stress σt and strain �t can then be calculated by 

σt = σe(1 + �e) 
�t = ln(1 + �e). 

The figure below is the plot of the true and engineering stress-strain curves based on the 
given data. Notice that the plastic regions in each curve are different. In the engineering 
stress-strain curve, the plastic region appears to have a positive slope suggesting some 
level of strain hardening while in the true stress-strain curve that material appears to 
act as perfectly plastic (e.g. no strain hardening). 

A measure of the strain hardening in a material is the strain hardening exponent n 
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given the equation σ = K�p
n . This exponent can be determined by plotting the log of 

stress against the log of strain in the plastic region. The slope of a line fitted to these 
data yields n. For our data, the graphs and fits are shown below. We find that n in 
the engineering stress-strain data is ∼ 0.09 and nominally zero in the true stress-strain 
data. Therefore we conclude that the UROP must have analyzed the engineering stress-
strain data and thought she observed strain hardening in the material. To avoid this 
error, the true stress-strain data should always be utilized when actual properties of the 
material are calculated, as these measures of stress and strain more accurately reflect 
the deformation state of the material (not just what is easiest to measure) 
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(b) Determine the elastic and plastic strain at failure. 

Solution: The results of this problem depends on whether you used the true or engi­
neering stress-strain data. The method is the same for each, but since we just lectured 
about the importance of using true stress-strain, we will stick with that. 

The total strain �tot is the sum of the elastic strain �el and �p. From our data, we 

3.22 Mechanical Behavior of Materials 2 Prof. K.J. Van Vliet 



������� 
������� 

������� 
������� 

find �tot = −0.19. The elastic strain is just the strain accumulated in the elastic 
region up to the yielding point, which in our data occurs at �el � −0.3. Therefore 
�p = (−0.19) − (−0.03) = −0.16. 

(c) Not one to give up easily, you think that you may be able to get the metallic glass to 
strain harden by applying a cyclic load (with the minimum load being 0 N) through the 
plastic region. Show what the resulting stress-strain curve would look like if you applied 
three cycles before failure. 

Solution: When a material is loaded into the plastic region (but before failure) and 
then the load is released, the material will recover all the elastic strain (in most cases). 
The plastic strain however is permanent deformation and therefore the strain at zero 
applied stress will be equal to the plastic strain. If the material is then loaded again, it 
will initially strain elastically (following σ/E) until the yield stress is reached and then 
the strain will be plastic. See the figure below. 
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2. You are given a material and told that it is elastically isotropic and exhibits a yield strength σy 

of 950 MPa. The material is being used in an application where it experiences a stress state 
of


σij = MPa

0 0 300

0 −400 0


0
300
 −800


(a) According to the von Mises and Tresca criteria, respectively, does the material yield? 

Solution: Before calculating the von Mises and Tresca stresses, I like to determine the 
principal stresses. You can do this using Mohr’s circle (as was discussed in recitation) 
or by equations given in Courtney. From either method, we find 

σP = 
100 0 0


MPa

0

0 −400 0


0
 −900
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The von Mises criterion is given by


1 � � 
σ = (σI − σII)2 + (σII − σIII)2 + (σIII − σI)2 
◦ 2 

which yields σ = 866 MPa. Since σ < σy = 950 MPa, the material will not yield ◦ ◦
according to the Von Misses criterion. 

The Tresca criterion is 
σ = σI − σIII ◦ 

and yields σ = 1000 MPa, which is larger than σy. Therefore according to the Tresca ◦
criterion, the material would fail. Note that we get two different answers. 

(b) Plot the yield surfaces (on the same graph) of the material based on the von Mises and 
Tresca criteria. 

Soution: See the figure below. For simplicity, only a slice of the yield surface is shown. 
Accurate representation of each surface in three dimensional can be found under “Yield 
Surfaces” on Wikipedia and MechE-geared textbooks on continuum plasticity. In order 
to draw the entire surface, we must assume that the material is isotropic (an inherent 
assumption in von Mises and Tresca), and thus the yield stress of the material is the 
same in tension and compression. 

σI

σIII

σy = 950 MPa

σy = 950 MPa

σy = 950 MPa

σy = 950 MPa

Tresca

von Mises

σy,T = 1300 MPa

σy,T = 1300 MPa

σy,C = 2000 MPa

(c) You decide to examine the material more closely by performing your own uniaxial ten­
sion and compression tests. The stress-strain data for these tests are found in . 
Plot these data on the same graph as you made in (b). Discuss how the von Mises and 
Tresca criteria predict yielding in the material. Is there a better criterion to use for this 
material? Explain. 

Solution: The yield stress in tension and compression can be determined from a line 
drawn with a strain offset of 0.002 and slope equal to the Young’s Modulus (see fig­
ure below). Where this line intersects the strain-stress curve is the the yield stress. 
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Doing this we find the yield stress in tension σy,T = 1.3 GPa and in compression 
σy,C = 2 GPa. These points are plotted on the graph in the solutions to part (b). 
We see that both the von Mises and Tresca criteria do not accurately predict the asym­
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metry in the yielding stress observed in the tests. A yield criterion that accounts for this 
asymmetry should be used. Examples include the Mohr-Coulumb and Drucker-Prager 
criteria that are discussed in more detail in the following problems. 

The data used in this problem were taken from a paper by A.C. Lund and C.A. Schuh 
(Acta Mat. 51, 2399 (2003)) where they simulated yielding in metallic glass to exam­
ine the yield surface. In their analysis, they choose to use the Mohr-Coulumb criterion 
because they were only interested in the non-shear terms that contributed to yielding. 

3. Noting that the von Mises and Tresca criteria deviate for specific stress states in the yield 
surface considered above, determine the following: 

(a) The stress tensor σij corresponding to the stress state(s) at which there is maximal dif­
ference between these two yield criteria, expressed as a matrix and as a representative 
volume element (RVE) of the material. This will correspond to the biggest gap(s) be­
tween these two predictions in the graphical yield surface. 

Solution: The maximum difference between the von Mises and Tresca surfaces occur 
when σ1 = −σ2 or σ2 = −σ1 (see the figure below). From Mohr’s circle, this state is 
equivalent to one of pure shear or 

σij = 
0 0
 τ

0 0 0

0 0 0


=

σI 0 0

0 0 0

0 0 −σIII 

MPa


(b) The magnitude of this difference, expressed first in terms of an algebraic expression in­
cluding the σy of the material and second in terms of a percentage basis [%]. 

Solution: For this state, Tresca criterion gives σeff = σy/2 and von Mises gives σeff = 
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von Mises

max difference
σIII = -σI 

σy/
√

3. This is a 13% difference. 

(c)	 Which of these two criteria more accurately predicts the stress states corresponding to 
material yielding in pure metals and metallic alloys, and why does this tend to be the 
more accurate predictor? To answer this, you will need to rely on and show/cite experi­
mental data for selected materials. 

Solution: Considering several published yield surfaces, it is clear that von Mises better 
predicts yield in ductile metals that fail via shear. This is because all three stress axes 
play a role in deforming the lattice and contributing to the magnitude of shear stresses 
on slip planes. 

4. The yield strength σy of many materials is poorly described by von Mises and Tresca; these 
include porous materials, glassy polymers, granular media, and biological materials. For such 
materials, σy depends in part on the state of hydrostatic stress σii and thus the first invariant 
of σij , I1. Here, you will explore some of these pressure-sensitive yield criteria. 

(a) Mohr and Coulomb discussed continuum mechanics and particle interactions, respec­
tively. Their ideas enabled modification of the yield criteria to reflect the fact that σy 

may differ in uniaxial tension vs. compression. This criterion is commonly used for 
bulk metallic glass and soils, which fail at lower applied stresses in tension than in com­
pression. It linearly relates the effect of superposed normal and shear stresses on the 
stress state required to yield the material, and Mohr’s circle helps us easily understand 
this. Assume an imposed principal stress state in a material plane; Mohr-Coulomb ex­
presses the yield criteria in terms of the stress state at maximal shear stress resulting 
from σ1 and σ3, and can be expressed as the material yielding when: 

τ =< σ > sin α	 (1) 

where < σ > is the average normal stress corresponding to τ , and (τ,< σ >) is the co­
ordinate on Mohr’s circle defined at the point of max shear stress for defined σ1 > 0 and 
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σ3 > 0, and α is the friction angle. Physically, α is the angle that would naturally arise 
if you poured the granular material onto a surface due to friction between the particles, 
and is usually between 15o and 50o . In terms of Mohr’s circle, it is the angle between 
the vertical line connecting (τ,< σ >) to the τ = 0 horizontal axis, and the tangent of 
the circle that intersects the point (τ = 0, σ = 0). Draw this Mohr’s circle, and restate 
the Mohr-Coulomb yield criterion only in terms of these normal principal stresses and 
the material friction angle. 

Solution: See the figure below for the Mohr’s circle. Note that, more generally, the 
tangent to this circle need not intersect (σ = 0, τ = 0); it needs only cross the line 
defined as σ = 0, and then the y-intercept defines a finite k, the value of τ defined as the 
cohesion strength of the material. The Mohr-Coulomb yield criterion is thus restated as 

(σI− < σ >)2 + (σIII− < σ >)2 = 2 < σ >2 sin2 α 

τ

σ

σIII

σy,C 

α
α σI 

σI - σIII / 2 

(b) Drucker and Prager developed the creatively named Drucker-Prager yield criterion orig­
inally for soil mechanics and it is often applied to composite materials such as cement 
or concrete. It accounts for normal and shear stresses, and can be stated as: 

f = J2 − αI1 − k (2) 

where J2 is the second invariant of the deviatoric stress tensor sij and α and k are mate­
rial properties that reflect the friction angle and cohesion, respectively. When f reaches 
a critical value corresponding to yielding under a uniaxial stress state, the material will 
yield. Express f in terms of the stresses σij that define I1 and J2, and determine the 
value of f(α, k) that corresponds to yielding under an applied uniaxial stress state. 

Solution: In Drucker-Prager, 

I1 = σ11 + σ22 + σ33 

and 
1 1 � � 

J2 = = (σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + σ2 
13 + σ2SijSij 12 + σ2 

232 6 
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Therefore


f =
1 �� 

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 
� 
+ σ2 

13 + σ2 
�1/2 

−α(σ11+σ22+σ33)−k√
6 12 + σ2 

23 

In uniaxial tension at yield, σ11 = σ1 and all else is zero resulting in 

1 
f = √

6
[σ1

2 + σ1
2]1/2 − α(σ1) − K 

√
3 

= σ1( 3 
− α) − k 

(c) Mohr-Coulomb and Drucker-Prager are similar in relation to each other as Tresca and 
von Mises. Both account for superposed normal and shear stresses, but one is more 
conservative than the other. Graphically represent the M-C and D-P yield locii on the 
same σ1/σy vs. σ2/σy graph, and state why one is more conservative than the other in 
predicting yielding of pressure-sensitive materials. 

Solution: See below for the Mohr-Coulomb and Drucker-Prager yield “surfaces”. Be­

cause Drucker-Prager consider σI , σII , and σIII (similar to von Mises) and Mohr-

Coulomb considers only σI and σIII (similar to Tresca), Drucker-Prager is more con­

servative in predicting yielding of pressure sensitive materials.


σI

σIII

Mohr-Coulomb

Drucker-Prager

σy,T 

σy,T 

σy,C 

σy,C 

5. Material stiffness and strength are very different properties attributed to very different atom­
istic mechanisms. In 60 words or less (think elevator conversation), clearly and accurately 
state the difference between these two concepts in a way that should be perfectly clear to any 
engineer, physicist, or chemist. 

Solution: Stiffness is resistance to reversible bond stretching, and reflects macroscopic re­
sistance to elastic deformation. Strength is resistance to irreversible bond rearrangement 
and defect motion, and reflects macroscopic resistance to plastic deformation. 

3.22 Mechanical Behavior of Materials 8 Prof. K.J. Van Vliet 



6. We have discussed that dislocations move in response to shear stresses less than the theoretical 
shear strength of a crystal, and that the motion of each dislocation contributes unit slip of 
magnitude |b|. 

(a) Express the plastic shear strain γp that would result from a single edge dislocation glid­
ing along its slip plane all the way to the free surface. Here, consider a rectangular 
single crystal block of height h, width across the page w and depth into the page L; first 
express γp(b, h) and then express γp(A, V ) where A is the glide plane area and V is the 
volume of the block. 

Solution: If edge moves entirely thru the crystal on its slip plane then 

b bA 
γp = = 

h V 

A = wL

h
b

w

L

(b) Now consider a single edge dislocation in the center of the perfect rectangular-prism 
box, gliding by an incremental slip inside the block dx. Express the incremental shear 
strain dγp in terms of b, L, dx and V . 

Solution: If the dislocation only moves incrementally by dx then 

bdA bLdx
dγp = = 

V V 

A = wL

h

w

L

dx

(c) Now consider the case of n dislocations, and express this incremental shear strain in 
terms of dislocation density ρ (which is always defined as total dislocation line length 
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per unit volume of material), b and the incremental slip dx. 

Solution: For n dislocations, 
bnLdx

dγp = 
V 

Dislocation density ρ is equal to the line length over volume (nL/V ). Therefore, 

dγp = bρdx 

(d) Finally, express the time derivative of dγp in terms of the time derivative of displace­
ment dx/dt. You will have derived the Orowan equation, which predicts the plastic 
shear strain rate possible in a material of known dislocation density, Burgers vector, and 
dislocation velocity v. 

Solution: 

dγp dx 
dt 

= bρ 
dt 

γ̇p = |b|ρv 

(e) Assume dislocation velocity is equivalent to the speed of sound in Cu, and determine 
the plastic shear strain rate magnitude for annealed, single crystal Cu. 

Solution: Let sound velocity = 2300 m s−1 in Cu [Kumar et al.; Acta Mat 51: 2417 
(2003)] and dislocation density = 1013 m−2 (annealed) and Burgers vector = 3 ×
10−10 m (these could all be determined more precisely and/or values cited from liter­
ature). For these values, plasticity shear rate due to dislocation glide is the product, 
7 × 106 m s−1, or 7 × 108 cm s−1. Note that this solution assumes that all the disloca­
tions are equally mobile at the same time, and that the dislocations are in fact moving 
at the shear wave velocity inside the material. In actuality, only a fraction of the total 
dislocations may be under sufficient stress to move, and the velocity of these dislocations 
will be less than the shear wave (phonon) velocity; a typical experimental observation 
in annealed fcc metals is 101 cm s−1 . 

7. Complete PS3 wiki questions with your Special Topic colleagues. 
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