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Big Picture

« Phenonmenon: Failure of viral capsids
» Viral capsids = proteinaceous outer shell of viruses that enclose highly-
packed genetic material under high pressure

« Capsomers = subunits that make up the capsid

Capsid [——__
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Capsomer

« Material Class: Proteinaceous biological materials
« Motivation:
« Understanding viral release of genetic materials

* Gene therapy
* Biomimetic nanocontainers for drug delivery

 Antiviral Vaccines
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Microscopic mechanism

L ennard-Jones Potential Model

* Explains the equilibrium structure of viral capsids.
» Force Balance: R<R(eq.): Repulsive force = Compressive stress

R>R(eq.): Attractive force = Tensile stress

a) b)
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*Asymmetric L-J potential explains the stress states seen in Figure b).

*Compressive stress at R<R(eq.) decreases faster with R than the tensile stress does

at R>R(eq.)
. . . . Toughness=2.8MPa
Mechanical probing of virus capsids g g ——
*Atomic force microscopy (AFM) used to strain the capsid
until yielding and then fracture occur. Toughness and
yield stress can be calculated. Yield Stress =2.2MPa
F, 2.8nN
o, =2 = _ = 22MPa
Area 1252.2nm Yield Strain=0.29 Total Strain=0.85
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Prediction & Optimization

- Predictions:
* Equilibrium capsomer spacing - Equilibrium capsid
radius, R
» Asymmetric LJ potential > Easier (smaller required o) to
stretch than compress by a given AR
» Capsids more easily fail by bursting/rupture than
by compression!
* LJ potential between capsomers -
» Max tolerable force (+ accompanying radius) found
from potential’s flex point
* 5-10% radius expansion before bursting
 With increasing thermal fluctuations at increasing T >
» Capsids fail before flex point radius and stress at

Image removed due to copyright
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higher T
Upon bursting, small crack develops
. mi I . which propagates catastrophically
Optl mization: _ ) ) _ until it rips across capsid surface
» To enhance bursting (genetic material delivery):
elncrease T As in intergranular fracture, the crack
. . . . propagates most easily at the
Ac!Just pH & sglt concent_ratlons_of amble.nt interface between adjacent
environment to increase differential osmotic pressure capsomers

* i.e. decrease ambient pressure
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