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Homework # 1 

September 12, 2007


Homework is due on Wednesday September 19th, 5pm 
 

1 Linear operators, hermitian operators and more 

1. What does it mean for an operator Ô to be linear and hermitian? 

2. Prove which of the following operators is linear, and which is hermitian: 

d 1 d 2 , , xdx i dφ 

3. Let’s consider a particle of mass m trapped in a one dimensional well of 
length a. The wavefunction of the particle is given by ψ(x) = Ax(a − x). 
The wavefunction is zero outside the well. 

a) Find a value for A such that the wavefunction is normalized over the 
interval [0, a]. 

b) Calculate the expectation value of the position x of the particle in the 
well. 

c) What is the expectation value of the kinetic energy of the particle in 
the well? 

2 The 2D electron gas 

2D electron gases are observed at the interface between a semiconductor and a 
metal. One of the easiest model used to describe the main properties of the 2D 
electron gas is to consider non-interacting free electrons. In this model, we 
consider that the Coulomb repulsion between electrons is zero and that they do 
not feel any forces inside the box. This problem is concerned with the proper 
derivation of the eigenfunctions and the energy eigenvalues of a free electron in 
a 2D geometry. 

2.1 General solution for the 3D case 

Let’s consider a box of dimensions Lx and Ly in respectively the x and y direc­
tions, and w in the z direction. An electron is enclosed in this box and cannot 
escape from it, but the electron is free to move inside it. This means that the 
potential energy of the electron is zero inside the box and infinite outside it. 
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Since the electron cannot escape, then the electron’s wavefunction has to vanish 
on the sides of the box. So we will write that: 

ψ(0, y, z) = ψ(Lx, y, z) = 0 for the x direction 

ψ(x, 0, z) = ψ(x, Ly, z) = 0 for the y direction 

ψ(x, y, 0) = ψ(x, y, w) = 0 for the z direction 

Those constitute the boundary conditions for our problem. 
1) Write down the Schrodinger equation for an electron moving inside the 

box. 
Now we will make the ansatz that you have seen in class and use the method 

of separation of variables to solve the Schrodinger equation. The wavefunction 
can be written as: ψ(x, y, z) = X(x)Y (y)Z(z). 

2) Translate the boundary conditions for ψ in the x, y and z directions in 
boundary conditions for respectively the X, Y and Z fonctions. 

3) By using the ansatz for the wavefunction ψ, write the left hand side of 
the Schrodinger equation as a sum of 3 terms that are respectively fonctions of 
x, y and z only. The right hand side is reduced to a constant E. 

4) The only mathematical solution for the Schrodinger equation expressed 
in question 3) is that each term of the equation is equal to a constant and that 
those constants add up to E. Let’s call Ex, Ey and Ez those constants. Write 
down the 3 separate equations for the X, Y and Z functions. 

The general solution for those three equations should be: 

2mEx • X(x) = Ax sin(kxx) + Bx cos(kxx) with kx = 
h̄2 

2mEy • Y (y) = Ay sin(ky y) + By cos(kyy) with ky = 
h̄2 

Z(z) = Az sin(kz z) + Bz cos(kz z) with kz = 2mEz • 
h̄2 

5) Use the boundary conditions found in question 2) to find the allowed values 
for Ex, Ey and Ez in terms of integers nx, ny and nz. Find which constants 
in the set (Ax, Ay, Az , Bx, By, Bz) are zero and simplify the general solutions 
for X, Y and Z. Finally write down the allowed total energies (the eigenen­
ergies) E(nx, ny, nz ) and the associated allowed wavefunctions (the eigenfunc­
tions) ψnx,ny ,nz (x, y, z). 

At this stage we see that we still have some unknowns in the problem, 
namely the normalization constants in front of the eigenfunctions. Let’s denote 
by Anx,ny ,nz the constants in front of ψnx,ny ,nz (x, y, z). We know from physical 
intuition that the probability of finding the electron inside the box is 1. So for 
any eigenfunction, we must have: � Lx 

� Ly 
� w 

ψ∗ (x, y, z)ψnx,ny ,nz (x, y, z)dxdydz = 1 
0 0 0 nx,ny ,nz 

This is the normalization condition for the eigenfunctions. 
6) Using the analytical expressions for the eigenfunctions obtained in ques­

tion 5), prove that: 

Anx,ny ,nz = LxL
8 

y w = V 
8 , where V is the volume of the box 
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2.2 When can we talk about a 2D gas? 

Now that we have solved our problem mathematically, let’s have a closer look 
at the energy eigenvalues: 

E(nx, ny, nz ) = h̄2π2 
( n x 

2 

+ 
n y 

2 

+ n z 
2

2 ) = h2 
( n x 

2 

+ 
n y 

2 

+ n z 
2

2 )2m L2 L2 w 8m L2 L2 wx y x y 

1) What is the energy difference ΔEx between state E(nx +1, 0, 0) and state 
E(nx, 0, 0)? In the same way, calculate ΔEy = E(0, ny + 1, 0) − E(0, ny, 0) and 
ΔEz = E(0, 0, nz + 1) − E(0, 0, nz ). 

2) Calculate the ratios ΔEz and ΔEz .ΔEx ΔEy 

3) Now imagine that the box is very elongated in the x and y directions, i.e 
Lx and Ly are macroscopic, and very thin in the z direction. To make things 
clearer, let’s take w ∼ 10nm and Lx = Ly ∼ 1µm, which are typical dimensions 

2nz +1 2nz +1in semiconductor/metal junctions. In real devices the ratios 2nx+1 and 2ny +1 

are of order unity. Knowing this, give a typical value for the ratios calculated 
in question 2). 

4) From the numerical result of question 3), what can you deduce in terms 
of level spacings in x and y directions compared to the level spacing in the 
z direction? In which direction(s) of space can you consider that the allowed 
energy states form a quasi-continuum and in which direction(s) the allowed 
energy levels are quite well separated? 

When talking about real devices (that are always 3-dimensional), we can 
speak of a 2D gas of electrons when the motion of each electron is ”frozen” 
in one direction (let’s call it the z direction) and not in the two others (x and 
y). By ”frozen”, we mean that the energy difference between the energy states 
caracterized by nz = 1 and nz = 2 is bigger than any typical thermal energy 
kB T . 

5) Calculate the energy difference ΔEz = E(0, 0, 2) − E(0, 0, 1) in a GaAs 
device for which the width w is 10nm and the mass of the electron is m∗ = 
0.067m, where m is the mass of the electron in vacuum (m= 9.109 ∗ 10−31kg). 
What is the temperature T corresponding to this energy difference, i.e such that 
kB T = ΔEz? Is the motion of the electron in the z direction ”frozen” for this 
system when operated at room temperature (300K)? 
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