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Homework # 4 

October 2, 2007


Homework is due on Wednesday October 10th, 5pm 

1 Nodal surfaces in the hydrogen atom 

Draw the radial component of the 3s, 3p, and 3d orbitals for the hydrogen atom. 
For each of these orbitals, draw or describe the nodal surfaces and explain which 
ones are due to the radial component of the wavefunction, and which to the 
angular component. 

2 Acoustic phonons in a 2D square lattice 

In this problem we would like to study the dynamics of a 2 dimensional square 
lattice. To do this we will use the quadratic approximation to express the 
potential energy of the crystal. Atomic positions at equilibrium are represented 
by the following vectors: 

R�uv = a(u�ex + v�ey) 

where a is the lattice spacing. Instantaneous atomic displacements with respect 
to their equilibrium position are represented by the following vectors: 

�τuv = xuv�ex + yuv�ey 

where u and v are integers. 
In a 2D square lattice, each atom (u, v) has 4 nearest neighbours: (u − 1, v), 

(u +1, v), (u, v − 1) and (u, v +1). In our model we will consider that each bond 
between two nearest neighbours has a certain energy. This energy is divided into 
two contributions. The first one is a compression/elongation contribution 
arising only when atoms are moving in the same direction which is the bond 
direction. We model this by a spring of constant k. The second contribution is a 
shearing contribution arising only when one of the atom moves perpendicular 
to the other. We model this by a spring of constant g. The total potential energy 
of the crystal is a sum over an infinite number of pairs of atoms, but the only 
ones where the atomic displacement of atom (u, v) appear are the following: 

V (..., xuv, yuv, ...) = ... + 
1 k(xu+1v − xuv)2 + 1 k(xuv − xu−1v)2 + 1 k(yuv+1 − yuv )2 + 1 k(yuv − yuv−1)2 +� 2 2 2 2 � 
1 g(xuv+1 − xuv)2 + 1 g(xuv − xuv−1)2 + 1 g(yu+1v − yuv)2 + 1 g(yuv − yu−1v)2 +2 2 2 2 

... 
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The first four terms are the ”compression/elongation” terms and the last four 
ones are the ”shearing” terms. For example if one looks at 1

2 g(xuv − xuv−1)2 , 
one sees that when atoms (u, v − 1) and (u, v) are displaced by respectively 
xuv−1 and xuv in the x direction, then the relative displacement between the 
two atoms is xuv − xuv−1. And since this relative displacement is orthogonal 
to the bond direction (which is in the y direction) then a shearing energy of 
1 g(xuv − xuv−1)2 is associated with it. 2 

1) Write down Newton’s equations for atom (u, v) given the expression for 
the total energy of the lattice given above. The atoms have the same mass 
denoted by m. 

2) By using the ansatz: 

�τuv = (x0�ex + y0�ey)ei(kxua+ky va−ωt) 

transform Newton’s equations into a 2 dimensional linear system of equations. 
3) Find the dispersion relations ω(kx, ky). Define the first Brillouin zone 

for this crystal, i.e the smallest k-space unit cell that uniquely defines all the 
possible phonon frequencies ω(kx, ky). 

3 Nuclear Magnetic Resonance 

In NMR experiments one can actually image a body by looking at resonance 
peaks in the radio frequency domain corresponding to photon emission as a 
response to a previous magnetic exitation. In this problem we would like to 
focus on the physics of this resonance and find a quantum description for it. This 
will be an occasion for us to solve the time-dependant Schrodinger equation. 

The principle of an NMR experiment is to look at the phenomenon of nuclear 
spin flip. To induce such a flip one uses a big homogenous magnetic field in 
the z direction and a small magnetic field rotating in the xy plane. Nuclei (and 
electrons) are like little magnets, they carry an intrinsic magnetic moment which 

has the property to be proportional to the spin, i.e �µ = γS�̂ . The total energy 
of a magnet in a magnetic field B� reduces to the magnetic interaction of the 
magnet with the field: 

µ. B = −γS. B�Etot = −� � �̂

One describes the quantum state of the magnet by a 2 dimensional vector 

|ψ(t)� = 
a
b(
(
t
t
)
) 

, where a(t) and b(t) are time dependant complex numbers. 

This description is nothing but the description of the spin quantum state of a 
spin one-half particle like the electron or the proton. Indeed since the mag­
netic moment is proportional to the spin, what we are actually looking at is the 
dynamics of the spin induced by the magnetic field B� . 

1) In homework two we saw what the y projection of the spin operator was. 
Now we need the entire description of the spin operator. Here it is: ⎛ ⎞ 

Ŝx 

S
�̂ = ⎝	 Ŝy ⎠ = Ŝx�ex + Ŝy�ey + Ŝz�ez 

Ŝz 
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The projections are operators themselves and the expression for those operators 
in the orthonormal basis of the eigenvectors of Ŝz , denoted by {|+� , |−�}, is: 

Ŝx = h̄2	
0 1 
1 0 

ˆ h̄	 0 −i 
Sy = 2 i 0 

Ŝz
h̄
2 

1 0 
= 0 −1 

From the expression for the spin operator and the total energy of the magnet 
in a B� field, write down the time-dependant Schrodinger equation for the spin 

state |ψ�	 = 
a
b(
(
t
t
)
) 

. The magnetic field consists of the superposition of a 

homogeneous magnetic field in the z direction B�0 = B0�ez and a rotating field 
B�1 = B1(cos(ω1t)�ex + sin(ω1t)�ey) in the xy plane. 

2) In order to simplify the resolution of this equation in a(t) and b(t), we 
will use the following ansatz for |ψ(t)�: 

2 

|ψ(t)� = 
d

c

(
(
t

t

)
)
e

e
−

i

i 

γB0t 

γB0t 
2 

Using this ansatz re-write the Schrodinger equation in terms of c(t) and d(t). 
To do this, express the left-hand side of the Schrodinger equation ih̄d|ψdt 

(t)� in 
terms of c(t) and d(t). Then express the right-hand side by replacing a(t) and 

2 2b(t) by respectively c(t)ei 
γB0t 

and d(t)e−i 
γB0t 

. Simplify as much as you can the 
terms remembering that cos(x) + i sin(x) = eix and cos(x) − i sin(x) = e−ix . 
The final equations in c(t) and d(t) should be simple. 

3) The solution for those equations, given that at t = 0 we consider that 
1 |ψ(0)� = |+� = 0 

, are: 

� � � 
1 (ω iω+t iω− t) 

� 
c(t)

= ω−−ω+
)t 

−e − ω+e
2e−i(ω++ω− iω+t iωd(t) 
γB1(ω−−ω+) ω+ω−(e − e −t) 

where ω± = − 12 (γB0 + ω1 ± (γB0 + ω1)2 + (γB1)2). Given this, write down 
the quantum state of the system at any time t. 

4) What we are interested in is the probability that at time t the system 
has ”flipped” to a spin down state from the spin up state at time t = 0. Given 
the full expression of |ψ(t)� of question 3), calculate this transition probability 
P (t) to measure the system in a ”spin down” state at time t. Give your |+�→|−�
answer in terms of γ, B0, B1, ω1 and t. 

5) From question 4), calculate the maximum value for the transition prob­
ability. Plot the maximum probability as a function of ω1 considering that ω1 

can take positive and negative values (this relates to the fact that B�1 can ro­
tate clockwise or anti-clockwise in the xy plane). What is the width at half 
maximum Δω? 

6) What is the limit of Δω when the amplitude of the rotating magnetic 
field B1 is going to zero? What can you conclude from that? 
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discussion: In an hospital, one can use an NMR system to image the brain 
of a patient for example. To do this, superconducting coils are used to create 
an inhomogeneous B�0 field. Then a rotating field B�1 is created with a definite 
frequency ω1. Now since the resonance frequency is given by γ||B�0|| and the 
sharpness of the resonance is given by 2γB1, one can see that if B1 is really small, 
then only areas of the brain where the local field B�0 is such that γ||B�0|| = ω1 will 
absorb and emit radio photons. If we somehow have a way to determine from 
what points in space the emitted photons originated, then we have a device that 
is capable of precisely imaging areas of the brain that have the same chemical 
and magnetic environment. 
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