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Homework # 6 

October 29, 2007


Homework is due on Thursday November 1st, 5pm 

1	 Thermodynamics of the free electron gas in 
3D 

1.1 Physics at T=0K 

Let’s consider a parallepiped of sides Lx, Ly and Lz , with free electrons inside it. 
In the free electron gas model, those electrons do not interact with each other, 
and so we can consider them one by one such that the many-body Schrodinger 
equation involving N electrons can be simplified into N independant Schrodinger 
equations for each electron. This simplification is the general framework for the 
band theory of solids. In the case of the free electron model, we go even 
further in the simplification by taking the effective periodic potential felt by an 
electron, namely V (�r), to be zero. So the Schrodinger equation for one electron 
is simply: 

h̄2 � 2ψ(�r) = Eψ(�r)2m−	 �

Along with the Schrodinger equation, we need some boundary conditions to fully 
define our problem. In this case we will take the standard Born-Von Karman 
boundary conditions. So we impose that ψ(�r+Lx�ex) = ψ(�r), ψ(�r+Ly�ey) = ψ(�r) 
and ψ(�r + Lz�ez) = ψ(�r). Using this model, we have already solved for the 
eigenenergies and corresponding eigenfunctions. The answer is: 

E(� h̄2�k2 2π + 2π + 2πk) = 2m with �k = Lx 
nx�ex Ly 

ny�ey Lz 
nz�ez 

where nx, ny and nz are integers. The energy levels are discretized but the 
spacing between those levels is so small that we can actually consider �k to vary 
continuously. The corresponding eigenfunction is: 

ψ�k(�r) = √1
V 
ei�k�r 

is a plane wave and V is the volume of the solid V = LxLyLz . This wavefunction 
is normalized over the volume of the solid. In order to find the ground state of 
the system, we then need to fill up each of the eigenstates E(�k) with 2 electrons 
with opposite spin until we reach the Fermi energy EF . 

1) Give an expression for the total energy of the system as a sum over all 
the occupied �k states. Use the standard relation that we saw in recitation, 
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to transform this discrete sum into an integral over the continuous variable �k. 
There is no need to calculate the total energy at this point. We have 
now two equivalent expressions for the total energy of a free electron gas. 

2) If we count all the occupied states up to the Fermi energy (remembering 
that each �k state can accomodate 2 electrons because of the spin degeneracy), 
then we find the total number of electrons. Express this number N as a sum 
over all the occupied �k states? Give the equivalent formula using an integral 
over the continuous variable �k. Calculate this number and give an answer in 
terms of the Fermi wavevector kF and another in terms of the Fermi energy EF . 

3) Calculate the total energy of the system and give your answer in terms 
of kF , V and fundamental constants like π, h̄ and m. Use the result for N in 
question 2) to express the total energy as NEF with a numerical prefactor in 
front that you must find. 

4) In order to give you some orders of magnitude for the different physical 
quantities defined in the free electron gas model, express the following quantities 

Nexclusively in terms of the electron density n = V : 

• The Fermi energy EF 

2mEF • The Fermi wavevector kF = 
h̄2 

The Fermi temperature TF = EF •	 kB


hkF
The Fermi velocity vF = ¯m• 

Now calculate numerically each of those values for the following metals: Au 
(n ≈ 5.9 ∗ 1028 m−3), Na (n ≈ 2.54 ∗ 1028 m−3) and Al (n ≈ 18.07 ∗ 1028 m−3) 

1.2 Physics at room temperature 

In the free electron gas model, electrons are independant particles, meaning 
that they do not interact with each other. Since they are independant particles, 
the calculation of thermodynamic quantities becomes easy. We will see how 
to generalize the zero temperature mathematical expressions for some physical 
quantities of interest when one deals with finite temperatures. 

1) What is the total density of states D(E) for a free electron gas? 
2) Using the density of states, express the total number of electrons as an 

integral over the energy range [0, EF ]. Calculate this number (again!) and 
express your answer in terms of the Fermi energy. 

3) At finite temperature, the probability to occupy a state of energy E is no 
longer 1 for E < EF and 0 for E > EF but rather the Fermi factor f(E, T ) 
whose value is: 

f(E, T ) = E−
1 
µ 

e kB T +1 

We see that this function goes to 1 for E < µ and 0 for E > µ when T 
goes to zero (µ is the chemical potential). So we immediately realize that 
limT 0µ = EF . Give an expression for the total number of electrons N (this →
number is of course the same at any temperature because we don’t loose any 
electron) as an integral over the energy range [0, +∞] involving the density of 
states and the Fermi factor. 
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4) The integral formula for the total number of electrons at any temperature 
obtained in question 3) is actually a way to determine the chemical potential 
µ as a function of N and T. At room temperature we can calculate the Taylor 
expansion of the chemical potential around the zero temperature limit and find: 

µ(T ) = EF 1 − π12 

2 
( kE

B

F 

T )2 

Calculate the correction to EF at room temperature (300K) for Gold. What do 
you think of this correction on the range of temperatures going from 0K to the 
melting temperature? 

5) In the same way we calculated the total number of electrons at finite 
temperature, we can also express the total energy of the system at finite tem­
perature. Give an expression for this total energy as an integral over the energy 
range [0, +∞] involving the Fermi factor f(E, T ), the density of states D(E), 
and the energy E. If one carries out a Taylor expansion of the total energy 
around the zero temperature limit, one can find the following result: 

Etot(T ) = Etot(T = 0K) 1 + 5π2 
( kB T )2 

12 EF 

From the expression for Etot(T = 0K) obtained in question 3) of the first sec­
tion and the above expression, show that the heat capacity per unit volume has 
a linear dependance on the temperature T? Calculate the prefactor in this linear 
relationship for Gold, Sodium and Aluminum and compare with the experimen­
tal results: 62 P a.K−2 for Gold, 58 P a.K−2 for Sodium and 135 P a.K−2 for 
Aluminum. 

The nearly free electron model 

We have seen in class, when we analyzed the Schrodinger equation and expressed 
it in a basis of plane waves, that the ”master equation” is a matrix equation 

k+ �where one has some diagonal kinetic energy terms like h̄2(�

2m
G)2 

and off-diagonal 
terms like V � (See equation (2.23) in the Singleton Book). The coefficiants G 
V � are nothing else than the Fourier coefficiants of the periodic potential when G 
one expands it as a Fourier series like: 

V (�r) = � V� eG G
i �rG�

In this little problem, we are interested to see what happens at the Brillouin Zone 
boundary in a 1D system, i.e for a k vector close to k = π

a , when one goes from 
a free electron V (x) = 0 to a very weak potential where V (x) = 2V cos( 2a

π x) 
with 0 < V � 1. 

1) Write down the ”master equation” (as a matrix equation) for a free elec­
tron gas where V (x) = 0. In this equation the ”vector” looks like that: ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

. . . 
ck−4 π 

a 

ck−2 π 
a 

ck 

ck+2 π 
a 

ck+4 π 
a 

. . . 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
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2) Close to the Brillouin Zone boundary k = π
a , can you see in the hamilto­

nian matrix found in question 1), two kinetic energy terms that have the same 
value? In this case we say that the point k = π

a is 2-fold degenerate. If you 
simplify the infinite hamiltonian matrix to a 2 × 2 matrix with only those two 
kinetic energy terms, what will be the two band dispersions around k = π

a ? Plot 
those two bands around k = π . a 

3) Re-write the ”master equation” but this time for the potential discussed 
above V (r) = 2V cos( 2a

π x). In this infinite matrix equation, we will focus on 
k vectors around the Brillouin Zone boundary k = π

a . Because at k = π
a the 

energy level in the case of the free electron model is 2-fold degenerate, all we 
need to keep in the hamiltonian matrix to study what happens around k = π

a 
is the two lines with an almost equivalent kinetic energy. Simplify the ”master 
equation” for the weak potential to a 2 × 2 matrix equation. 

4) Find the energy eigenvalues (which corresponds to two bands around 
k = π ) for this simplified 2 × 2 hamiltonian matrix. Plot those two band a 
dispersions around k = π

a . What is different with respect to the free electron 
model? What is the value of the ”energy gap” at k = π

a between the two bands? 
What is the slope of the two bands at k = π

a ? 
Remark: everything done in this exercise is discussed in detail in 

chapter 3, pages 23 to 26 of the Singleton book. Take a look at it 
and try to rederive everything in this exercise without looking at the 
book. The physical consequences of this analysis are very important 
and should be remembered. 
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