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Homework # 7 

November 1, 2007


Homework is due on Thursday November 8st, 5pm 

1 Intrinsic semiconductor 

Let us consider a 2 band intrinsic semiconductor. From the microscopic point of 
view this semiconductor is caracterized by a valence density of states, Dv (E), 
a conduction density of states, Dc(E), and a band gap Eg = Ec −Ev. Using 
those density of states and the Fermi factor f(T, E) = (E−

1 
µ)/kB T , we can 

1+e

easily express the volumic density of electrons in the conduction band, nc(T, µ), 
and the volumic density of holes in the valence band, pv(T, µ): 

nc(T, µ) = 
� +∞ 

f(T, E)Dc(E)dE and pv(T, µ) = 
� Ev (1 − f(T, E))Dv(E)dE

Ec −∞

Those formulas are extremely general and always applicable in practice. Now 
we will use the hypothesis of non-degeneracy, meaning that the chemical 
potential is far away in terms of thermal energy from the top of the valence 
band and the bottom of the conduction band: 

µ − Ev >> kB T and Ec − µ >> kB T non-degeneracy conditions 

For intrinsic semiconductors like Silicon, Germanium and Galium Arsenide 
those conditions of non-degeneracy are very well satisfied. Using this hypothesis, 
we see that the Fermi factor can be simplified to a Maxwell-Boltzmann factor 
(here in the case where E > µ): 

f(T, E) = (E−
1 
µ)/kB T becomes f(T, E) ≈ e−(E−µ)/kB T 

1+e

1.1	 Some general results for any Dc(E) and Dv(E) and both 
intrinsic and extrinsic semiconductors 

1) Using the non-degeneracy conditions, express the densities of electrons 
and holes, nc(T, µ) and pv(T, µ), as follows: 

• nc(T, µ) = Nc(T )e−(Ec−µ)/kB T 

• pv(T, µ) = Pv(T )e−(µ−Ev )/kB T 

Find an integral expression for both Nc(T ) and Pv (T ). What happens when 
one multiplies nc(T ) by pv (T )? 
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Important Remark: This relation is called the law of mass action. It is 
satisfied for both intrinsic and extrinsic semiconductors. All the doping does is 
to introduce some states inside the band gap, and shift the chemical potential, 
but this does not change the densities of states Dv(E) and Dc(E) so it does not 
change the law of mass action. 

2) Now if we consider an intrinsic semiconductor, what is the relationship 
between nc(T, µ) and pv (T, µ)? Use this relationship to express the chemical 
potential as a function of T only. What is the chemical potential at 0K? What 
is the order of magnitude of the chemical potential shift at finite T from its 
value at T = 0K? In which direction does the chemical potential shift from its 
value at T = 0K when one increases the temperature? 

1.2	 Introducing the parabolic approximation for the va­
lence and conduction bands 

3) By using the following results from the parabolic approximation of the 
valence and conduction bands: 

1 c	 1 vDc(E) = 2π2 ( 
2m∗ 

)3/2
√

E − Ec and Dv(E) = 2π2 ( 
2m∗ 

)3/2
√

Ev − E
h̄2	 h̄2 

calculate explicitly Nc(T ) and Nv(T ). Then use this to calculate the chemical 
potential µ as a function of T , m∗ 

c , m
∗ 
v, Ev and Ec. By taking the origin of the 

energy axis in the middle of the band gap, calculate the chemical potential shift 
in eV at 300K for GaAs (m∗ = 0.063 m and m∗ = 0.505 m, where m is the mass c v 
of a free electron). 

2 p-doped semiconductors 

We will now consider a semiconductor homogeneously doped with acceptors. 
Those acceptors are what we call ”shallow impurities” in the sense that their 
presence inside the host semiconductor is responsible for the appearence of al­
lowed energy states for holes right above the top of the valence band. The con­
centration of acceptors is Na and the binding energy of the holes is �a = Ea −Ev. 

2.1	 qualitative description of the physics with increasing 
temperature 

4) Describe qualitatively what happens to the majority carriers (in this p-
doped semiconductor the majority carriers are the holes) as one increases slowly 
the temperature T from 0K to high temperature. Use the terms : freezing-out 
regime, saturation regime and intrinsic regime to specify the different behavior 
regimes of the doped semiconductor with temperature. 

2.2	 quantitative calculation of the majority carrier density 
with temperature 
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5) Let us now construct the curve ln(pv(T )) as a function of 1/kB T . We 
will study the different regimes that you outlined above and find the expression 
for the chemical potential and the volumic density of holes in the valence band 
at different temperatures. To do this we will establish a general balance 
equation for the charges in the system. We denote by P (Ea, T ) the probability 
for a hole to occupy an acceptor level at temperature T. Show that we have 
the following equation between the total density of electrons in the conduction 
band nc(T, µ), the total density of holes in the valence band pv(T, µ) and the 
concentration of acceptor impurities Na: 

nc(T, µ) + Na(1 − P (Ea, T )) = pv(T, µ) balance equation 

6) At very low temperature, which term in the balance equation can 
we safely neglect and why? The probability P (Ea, T ) is given by P (Ea, T ) = 

µ−
1 
Ea . In the low temperature limit the chemical potential sits between 

1 kB T 
2 e +1 

the top of the valence band Ev and the acceptor level Ea. Simplify the term 
1 − P (Ea, T ) to a single exponential term up to a constant in front, and then 
use this simplified expression to show that the chemical potential can be written 
as follows (to obtain this expression you need to use the general expression for 
pv(T, µ) found in the first part of the problem set): 

µ(T ) = Ea+Ev − 1 kB T ln( Na )2 2 2Pv (T ) 

7) Using the expression for the chemical potential in 6), express ln(pv(T, µ)) 
as a function of T only. What is the coefficiant of the linear dependance of 
ln(pv (T, µ)) with 1/kB T ? This regime is called the freezing-out regime. 

8) At intermediate temperatures, where all the impurities have been 
ionized but no electrons have been promoted from the valence to the conduction 
band, simplify the balance equation and find an expression for the chemical 
potential. Show that in this regime called the saturation regime, ln(pv(T, µ)) 
is indepandant of the temperature. Define a temperature that will caracterize 
this intermediate regime. 

9) At very high temperature, electrons get promoted from the valence 
band to the conduction band. The density of impurities is then negligeable. Use 
the balance equation to calculate the chemical potential. Using this expression, 
calculate ln(pv(T, µ)) as a function of T only. This regime is called the intrinsic 
regime. What is the obvious reason for this? What is the coefficiant of the 
linear dependance of ln(pv(T, µ)) with 1/kB T ? 

10) Draw a schematic diagram of ln(pv(T, µ)) as a function of 1/kB T . 

3 The p-n junction 

We discussed the physics of what’s happening when one joins a p-type semi­
conductor and an n-type semiconductor together. After a very small amount 
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of time, a built-in potential is created and a space charge region at the met­
allurgical junction appears. We consider both doped semiconductor to be ho­
mogeneously doped with impurity concentrations Na and Nd. We choose an x 
axis perpendicular to the pn junction and going from the p-side to the n-side. 
At equilibrium, the drift currents and the diffusion currents balance each other. 
The drift currents are given by the standard Ohm’s law: 

Jn
drift (x) = nc(T, µ)eµnE and Jp

drift (x) = pv(T, µ)eµpE drift currents for 
electrons and holes 

In those expressions, µn and µp are the electron and hole mobilities. The diffu­
sion currents are given by Fick’s law: 

Jdiff (x) = −(−e)Dn 
dnc(T,µ) = eDn 

dnc(T,µ) andn dx dx 

Jdiff = −(+e)Dp 
dpv (T,µ) = −eDp 

dpv (T,µ) 
p dx dx 

Remember that electrons have a negative charge −e and the holes have a positive 
charge +e, hence the above equations. Because of the space charge region, an 
electrical potential φ(x) is created, and its effect is to shift rigidly the band 
structure at point x by an amount −eφ(x) which represents the amount of 
supplemental potential energy of an electron due to the electric field. We will 
study the behavior of the pn junction at room temperature which is about 300K. 

3.1 calculation of the built-in potential 

11) With what has been done in the previous part of the homework, con­
clude about the behavior regime of the p-side and the n-side at 300K. What is 
the expression for the chemical potential on the p-side, µL(T ), previous to the 
formation of the junction? Identically one can show that the chemical potential 
on the n-side previous to the formation of the junction is: 

NdµR(T ) = Ec + kB T ln( Nc(T ) ) 

where Ec is the bottom of the conduction band, Nd is the concentration of 
donor impurities on the n-side and Nc(T ) is the effective density of states in the 
conduction band. 

12) By definition the built-in potential is given by eφb = Ev(+∞)−Ev(−∞) = 
Ec(+∞) − Ec(−∞). By observing that the distance between the chemical po­
tential and the top of the valence band must not change on both the p-side and 
the n-side in the respective limits x → −∞ and +∞ even after the junction has 
been created, prove that the built-in potential is given by: 

eφb = µR(T ) − µL(T ) 

and calculate explicitly this built-in potential as a function of Eg, T, Na, Nd, 
Nc(T ) and Pv(T ). What is the built-in potential at 0K? What is the built-
in potential for GaAs at 0K and 300K with uniform doping of Na = Nd = 
1022 m−3? The band gap for GaAs at 300K is 1.43 eV. 
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3.2	 electrical potential profile and size of the depletion 
region 

Let us now focus on the depletion region. We would like to calculate the size 
of the depletion region as a function of some fundamental physical constants of 
the pn junction. For this we will consider that the charge density ρ(x) looks 
like the following: 

ρ(x) = −eNa for −dp < x < 0 and ρ(x) = +eNd for 0 < x < dn 

where dp and dn denote the size of the depletion region on respectively the p-
side and the n-side. The way to find the electrical potential is to use the Poisson 
equation with the appropriate boundary conditions. The Poisson equation in 
the international system of units is: 

d2φ(x) ρ(x) 
dx2 = − � 

where � is the dielectric constant of the medium (here some GaAs with � = 
13.2 ∗ �0) and �0 is the vacuum dielectric permitivity �0 = 8.854 ∗ 10−12F.m−1 . 

13) Find the boundary conditions that φ(x) must satisfy and solve the Pois­
son equation explicitly using the given shape for the charge density ρ(x). 

14) Using the continuity of the electrical pontential and its first derivative 
(the electric field) at x = 0, find two equations that will link the variables Na, 
Nd, �, dp, dn, e and φb together. From those expressions, give the values for dn, 
dp and w = dp + dn as functions of Nd, Na, e, � and φb only. Find the numerical 
values for each of those length in the case of a GaAs pn junction with φb = 1V , 
Na = Nd = 1022 m−3 . 

3.3	 pn junction under bias an I(V) curve 

When one apply a potential difference V between the two ends of a pn junction 
one can easily realize that forward bias and reverse bias are not symmetrical. 
Let us investigate why. For this we will use two relationships linking the carrier 
densities at different points x that may easily be obtained from what we have 
seen before. Those relations are the following: 

kB TFor electrons, nc(T, x1) = nc(T, x2)e e( φ(x1)−φ(x2) 
) 

and 

kB TFor holes, pv (T, x1) = pv(T, x2)e
−e( φ(x1)−φ(x2) 

) 

15) What is the relationship between the electron density at x = −dp and 
x = dn when no bias exists? Same question for the hole density. 

16) When one applies a bias V, it tends to favor the flowing of charges under 
forward bias and unfavor it under reverse bias. So we will take V to be 
positive when it is a forward bias and negative when it is a reverse bias. With 
this convention how will the built-in potential φb change when an arbitrary bias 
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V is applied? Explain what happens to the depletion region size when a forward 
and reverse bias is applied to the junction and conclude about the asymmetry 
between forward and reverse bias. 

17) Using the above results, show that the change in electron density Δnc 

at x = −dp between a configuration where no bias is applied and a configuration 
where a bias V is applied can be written as: 

eV 
kB TΔnc = n0(e − 1)c 

Same question for the change in hole density Δpv at x = dn. 

Concluding remark: This change in the concentration of minority carri­
ers on both side of the pn junction is responsible for a minority carrier diffusion 
current that behaves like: 

eV 
kB TJ(V ) = Js(e − 1) 

This current is responsible for the I(V ) response curve of a pn junction. 
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