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Homework # 8 

November 6, 2007 

1 Propagation equation in a non-dispersive medium. 

Consider the following propagation equation in an infinite, one-dimension medium: 

∂2y 1 ∂2y 
∂x2 

− 
v2 ∂t2 

= 0 

where y is a real function and v is called the phase velocity. 

a) Prove that any solution is the superposition of two waves propagating in 
opposite directions at the speed v, in other words any solution y can be written 
y(x, t) = f(x + vt) + g(x − vt) where f and g can be of arbitrary shape (twice 
differentiable though). Show the details of the derivation. 

Hint: You can define new variables α = x + vt and β = x − vt and rewrite the 
differential equation with these new variables. 

b) What can you conclude about the shape of a wave propagating in a non-
dispersive medium? 

Now, we look for stationary solutions, that is solutions for which space and 
time dependences can be separated: y(x, t) = f(x)g(t), where f and g must be 
real functions. 

c) Find equations for f and g, and solve them. Use physical arguments to elimi­
nate some classes of solutions. For a finite medium, what else would you have to 
know to completely solve the equation? How does that introduce quantization? 
Give an example and draw a parallel with a quantum-mechanical system that 
you have studied. 

d) Since the result of a) still holds, prove that any stationary solution is in­
deed the superposition of two waves propagating in opposite directions. Where 
does that happen in the first Brillouin zone of an infinite crystal? 

2 Propagation in a dispersive medium. 

For a dispersive medium, the phase velocity v must be defined as a function of an 
angular frequency ω. Therefore, we first consider waves whose time dependence 
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� � 
is imposed by an oscillatory source, leading us to write: y(x, t) = Re e−iωtg(x) , 
or, to simplify the notation (provided we remember to take the real part at the 
end), y(x, t) = e−iωtg(x) (this is not a priori a stationary solution as we de­
fined it earlier because taking the real part may have the effect of mixing time 
and space dependences). An example of such functions are the well-known de 
Broglie waves e−i(ωt−kx), where k is called the wave number. 

a) Derive an equation for g(x), and introducing a wave number k, find the 
ω

dispersion relation = v(ω). When is the solution a de Broglie wave? 
k 

Now we want to study the propagation of any type of wave function. At t=0, 
the space dependence is not eikx anymore, but a more complicated function f(x). 

b) How would you proceed to solve the problem by means of de Broglie waves 
only? 

Let us take an example. Assume that the initial space dependence f(x) can 
be decomposed into an infinite number of harmonics eikx with k spanning the 
[k0 − Δk; k0 + Δk] interval with uniform spectral density A. In other words, � Δk 

f(x) = A e ikxdx 
−Δk 

c) Calculate f(x) explicitly. Can you comment on the space width of the wave 
with respect to the wave number domain width? This is a very general result, 
that gives rise, in quantum mechanics, to the Heisenberg uncertainty principle. 

d) Now, at t > 0, express the solution in the form of an integral. 

To calculate the integral that you found in d), we will consider the Taylor 
expansion, 

dω 1 d2ω 
ω = ω0 + (k − k0) + (k − k0)2 

dk 2 dk2 

where ω0 = ω(k0). 

e) Assuming that ω is a linear function of k, calculate the solution at any 
dω

time t. Can you see why is called the group velocity? 
dk


d2ω

f) If is not equal to zero, give a qualitative discussion of what will happen. 

dk2 

Justify the expression dispersive medium. 

Propagation of light in a conducting medium. 

To solve Maxwell’s equations, one has to know how to relate the charge density 
ρ and the current density J to the fields E and B. In this problem, we treat the 
case of an uncharged, non-polarizable metal. The latter assumption means that 
we neglect polarization due to bound electrons. The electrons of the conduction 
band, however, are free to move under the influence of an electromagnetic field. 
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In the classical Drude model, the movement of a conduction electron in a field 
(E,B) is described by the equation, 

dp p
= − + f(t) 

dt τ 

where p is the electron momentum, 1/τ a damping coefficient representing the 
collisions of the electron with the atoms of the lattice, and f(t) is the force 
exerted by the fields on the electron. 

a) Show that for a conduction electron in the field of an electromagnetic wave, 
one can neglect the magnetic force and write f(t) = −eE. 

b) If ω is the electromagnetic wave angular frequency, upon what condition 

on the product ωτ can we reasonably set 
dp 

= 0 in the equation of motion? 
dt 

For τ ∼ 1 − 10 fs, for what wave numbers is this condition satisfied? 

For the rest of the problem, suppose that we work in the spectral range of 
far infrared wavelengths. 

c) Find the expression of the electric conductivity σ, defined by, 

J = σE 

d) Using Maxwell’s equations, derive the propagation equation for E in the 
metal. 

e) Looking for a solution of the form ei(ωt−kx), where k is a priori a com­
plex number, find an equation for k. Express the complex refractive index n as 
a function of σ, ω and the electric permittivity of free space �0. 

f) Prove that the relation you just found can be simplified into, 

σ 
n =

2ω�0 
(1 − i) 

g) Conclude that the intensity of the light beam propagating in the metal follows 
the law, 

I(x) = I0e
−x/δ(ω) 

where I0 is the intensity of the beam at the surface of the metal, x measures the 
distance from the surface, and δ(ω) is a typical penetration length called skin 
depth. Show that, � 

1 
δ(ω) = 

2σωµ0 

Interband absorption. 

Let us consider a direct gap semiconductor. Around the origin, the highest va­
h2¯ k2 

lence band is approximated by the parabola Ev(k) = − 
2mh 

, where mh is the 
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effective mass of a hole at the top of the valence band, and the lowest conduction 
h2k2¯

band is represented by the parabola Ec(k) = , where me is the effective 
2me 

mass of an electron at the bottom of the conduction band. Let Eg be the energy 
gap. 

a) Draw a schematic including all useful data. Give an example of a direct 
gap semiconductor. Does Si have a direct gap? 

b) By absorbing a photon, an electron can jump from the valence to the con­
duction band. Does k change? Why? 

Fermi’s golden rule gives the transition rate W for exciting an electron in an 
initial state i to a final state f by absorption of a photon of angular frequency 
ω, 

2π 2W =
h̄ 
|M | g(h̄ω) 

M is the element of matrix �f |H �|i�, where H � is the hamiltonian of the per­
turbation (here the interaction with light). g(h̄ω) is the joint density of states. 
By definition, g(h̄ω)d(h̄ω) is the number of allowed transitions involving the 
exchange of an energy between h̄ω and h̄ω + d(h̄ω). In the electric dipole ap­
proximation, the perturbing hamiltonian can be simply written, 

H � = −p E· 

where p is the dipole moment of the electron, p = −er. 

c) If a transition occurs, what can be concluded about the states i and f with 
respect to the total hamiltonian? 

d) Explain why in general it is not strictly rigorous to speak of ’s-bands’, ’p­
bands’, etc, when describing the band structure of a solid. 

However, around the origin, this simplification is legitimate. The angular de­
pendence of the Bloch wave ψ(r) can then be described in terms of the orbital 
moment quantum number l. If l is even, the wave function will be of positive 
parity, meaning that ∀r, ψ(−r) = ψ(r). If l is odd, we will have a negative 
parity, meaning that ∀r, ψ(−r) = −ψ(r). 

e) Selection rules say which transitions are allowed and which are forbidden. 
For example, in the electric dipole approximation, you cannot have a transition 
between two states that have the same quantum number l. Can you explain 
why? 

f) Calculate the joint density g(h̄ω) for the simplified band structure introduced 
earlier. You will define the reduced electron-hole mass µ, 

1 1 1 
= + 

µ me mh 

g) We suppose that the quantity �f |r|i� is known and is equal to B. Express the 
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absorption coefficient α in terms of the atomic density, the matrix element B, 
and all other relevant quantities. 
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