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Homework # 1, solution 

September 24, 2007 

Linear operators, hermitian operators and more 

1. What does it mean for an operator Ô to be linear and hermitian? 

solution: 

linearity We say that an operator Ô is linear when we have the following 
equality for any wavefunctions ψ(�r), φ(�r) and any complex numbers α, β: 

Ô(αψ(�r) + βψ(�r)) = αÔ(ψ(�r)) + βÔ(φ(�r)) 

hermiticity We say that operator Ô is hermitian when we have the 
following equality for any wavefunctions ψ(�r), φ(�r): 

ˆ � 
r) ˆ � 

( ˆ ˆψ|Oφ = ψ∗(� O(φ(�r))d3�r = O(ψ(�r)))∗φ(�r)d3�r = Oψ|φ 

2. Prove which of the following operators is linear, and which is hermitian: 

d 1 d 2 , , xdx i dφ 

solution: 

2 d d dlinearity of x , dx and 1 
i dx Let’s call Ô the following operator: dx . To 

check the linearity we must verify that: Ô(αψ(x)+ βψ(x)) = αÔ(ψ(x)) + 
dβÔ(φ(x)), which gives us (αψ(x) + βψ(x)) = α d (ψ(x)) + β d (φ(x)).dx dx dx 

But this result is true because the derivative of a sum of functions is just 
the sum of the derivatives. If we multiply this equality by 1 

i , we can 
deasily conclude that 1 

i dφ is also linear. The linearity of the x2 operator is 
obvious: x2(αψ(x) + βψ(x)) = αx2ψ(x) + βx2ψ(x). 

hermiticity of x2 Let’s now look at the property of hermiticity. We 

start with the x2 operator. We first write down the ψ x̂2φ integral, 

which is: ψ∗(x)x2(φ(x))dx. Then we move the x2 term to the left and 
find x2ψ∗(x)(φ(x))dx. Now since x2 is real we see that (�x2ψ(x))� 

∗ is 

the same thing as x2ψ∗(x). We can then conclude that: ψ x̂2φ = 

ψ∗�(x)x2(φ�(x))dx = (x2ψ(x))∗φ(x)dx, and this last term is nothing 

but x̂2ψ|φ , which proves that x2 is hermitian. 
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non-hermiticity of d We will now focus on operator d . Let’s express � dx 
ˆ

� � dx


the first integral: ψ d φ = ψ∗(x) d (φ(x))dx. The ”trick” is then to
dx dx| � b du(x)integrate by part. Using the integration by part formula: v(x)dx = 
d[u(x)v(x)]b � b 

u(x) dv(x) dx, we find that 
� 
ψ ˆ φ 

� 
= [ψ

a 
∗(x
dx 

)φ(x)]+∞ 
a dx dxa − | −∞ − 

+∞ dψ∗(x) φ(x)dx. The first term on the right-hand side of the last equa­−∞ dx 
tion is zero, because if a wavefunction does not vanish at infini­

ties, then this wavefunction can never be square integrable, i.e

that the integral of its square modulus is a finite number. Us­

ing this result, we can re-write 

� 
ψ d̂ φ 

� 
as − 

� +∞ dψ∗ (x) φ(x)dx. The
dx dx| −∞ 

dlast step consists in realizing that dψ
∗(x) = ( dψ(x) )∗, because (ψ∗(x)) = dx dx dx 

d (Re(ψ(x))−i.Im(ψ(x))) = dRe(ψ(x)) −i. dIm(ψ(x)) = (dRe(ψ(x)) +i.dIm(ψ(x)) )∗ = dx dx dx dx dx 

( dψ(x) )∗. We are now in a position to conclude that d is not an hermitian dx � � dx

d̂ 

� +∞ dψ∗(x)
operator, because we just showed that ψ dx φ = − dx φ(x)dx = � 
d̂ 

� 
| −∞


− ψ|φ .
dx 

hermiticity of 1 d remark: it seems that a lot of students got confused i dx 
because of the choice of my variable φ that looks like a wavefunction. So

i will use x instead of φ in my solution. Sorry for that!


1 d̂ 
� +∞ 1 dψ

∗(x)The first integral ψ| φ integrated by part gives us: − −∞ φ(x)dx.i dx i dx 

Moreover we have dψ
∗(x) = (dψ(x) )∗, so by knowing that − 1 = ( 1 )∗, we dx dx � � i i 

1 d̂ 
� +∞ 1 ( dψ(x)see that we actually end up with ψ i dx φ = − i dx )∗φ(x)dx = � +∞ dψ(x) 

| −∞ 

d( 1 
i dx )∗φ(x)dx, which proves the hermiticity of 1 

i dx . −∞ 

3. Let’s consider a particle of mass m trapped in a one dimensional well of 
length a. The wavefunction of the particle is given by ψ(x) = Ax(a − x). 
The wavefunction is zero outside the well. 

a) Find a value for A such that the wavefunction is normalized over the

interval [0, a].


solution: 

We know from the lectures that the square modulus of the wavefunction

gives us the probability to find a particle at a certain position �r in space.

If this is so, then we must be certain to find the particle somewhere in

space. The mathematical translation of this physical intuition is expressed

through the nomalization condition: 

� +∞ 2dx = 1 (in this one
−∞ |ψ(x)|
dimensional case). Let’s apply this normalization condition to our case of a

particle in a one-dimensional well. We know that the wavefunction is zero

outside the well, we can then conclude that the limits ±∞ in the integral

can be reduced to 0 and a. Using this we find that the normalization leads

us to:


0 
a |Ax(a − x)|2dx = 1 
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This equation gives us right away that: |A| = 30 
5 . We see that we a

found the modulus of A and not A itself. But this is a general feature of 
wavefunctions in quantum mechanics. Wavefunctions are defined up to a 
global phase. This means in particular that taking A as a real number 

equal to a
30 is perfectly suitable! 5 

b) Calculate the expectation value of the position x of the particle in the 
well. 

solution: 

By definition the expectation value of the position operator x̂ is given 
by (for a correctly normalized wavefunction): 

�ψ|xψˆ � = �xψˆ |ψ� = �ψ|x̂|ψ� = ψ∗(x)xψ(x)dx 

Injecting the analytical expression of the wavefunction with the correct 
normalization constant, we find: 

x̂ ψ� = 
a(Ax(a − x))∗xAx(a − x)dx = 

a 
Ax(a − x)xAx(a − x)dx = 

6

�ψ| |
0 

A2 a 30 a 6 a 
0 

= = 60 a5 60 2 

c) What is the expectation value of the kinetic energy of the particle in 
the well? 

solution: 

By definition, the expectation value of the kinetic energy is given by: � a h̄2 d2 
ψ|T̂ |ψ = 

0 ψ
∗(x)(− 2m dx2 )ψ(x)dx 

The second derivative of ψ(x) gives us −2A, so we finally obtain that: 
ψ| ̂ = 5h̄2 

2T |ψ ma

2 The 2D electron gas 

2D electron gases are observed at the interface between a semiconductor and a 
metal. One of the easiest model used to describe the main properties of the 2D 
electron gas is to consider non-interacting free electrons. In this model, we 
consider that the Coulomb repulsion between electrons is zero and that they do 
not feel any forces inside the box. This problem is concerned with the proper 
derivation of the eigenfunctions and the energy eigenvalues of a free electron in 
a 2D geometry. 

2.1 General solution for the 3D case 

Let’s consider a box of dimensions Lx and Ly in respectively the x and y direc­
tions, and w in the z direction. An electron is enclosed in this box and cannot 
escape from it, but the electron is free to move inside it. This means that the 
potential energy of the electron is zero inside the box and infinite outside it. 
Since the electron cannot escape, then the electron’s wavefunction has to vanish 
on the sides of the box. So we will write that: 
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ψ(0, y, z) = ψ(Lx, y, z) = 0 for the x direction 

ψ(x, 0, z) = ψ(x, Ly, z) = 0 for the y direction 

ψ(x, y, 0) = ψ(x, y, w) = 0 for the z direction 

Those constitute the boundary conditions for our problem. 
1) Write down the Schrodinger equation for an electron moving inside the 

box. 
solution: 
The stationnary Schrodinger equation for one electron in a potential V (�r) 

is: 
h̄2 � 2ψ(�r) + V (�r)ψ(�r) = Eψ(�r)2m− �

Now if the potential is zero, then the equation reduces to the following: 

h̄2 � 2ψ(�r) = Eψ(�r)2m− �

Now we will make the ansatz that you have seen in class and use the method 
of separation of variables to solve the Schrodinger equation. The wavefunction 
can be written as: ψ(x, y, z) = X(x)Y (y)Z(z). 

2) Translate the boundary conditions for ψ in the x, y and z directions in 
boundary conditions for respectively the X, Y and Z fonctions. 

solution: 
If the analytical expression of ψ is the following: ψ(x, y, z) = X(x)Y (y)Z(z) 

then the boundary conditions give us: 

ψ(0, y, z) = ψ(Lx, y, z) = 0 gives X(0)Y (y)Z(z) = 0 and X(Lx)Y (y)Z(z) = 0 
for any y and z 

ψ(x, 0, z) = ψ(x, Ly, z) = 0 gives X(x)Y (0)Z(z) = 0 and X(x)Y (Ly)Z(z) = 0 
for any x and z 

ψ(x, y, 0) = ψ(x, y, w) = 0 gives X(x)Y (y)Z(0) = 0 and X(x)Y (y)Z(w) = 0 
for any x and y 

We can then conclude that we must have X(0) = X(Lx) = 0, Y (0) = Y (Ly) = 0 
and Z(0) = Z(w) = 0. Those are the boundary conditions for our functions X, 
Y and Z. 

3) By using the ansatz for the wavefunction ψ, write the left hand side of 
the Schrodinger equation as a sum of 3 terms that are respectively fonctions of 
x, y and z only. The right hand side is reduced to a constant E. 

4) The only mathematical solution for the Schrodinger equation expressed 
in question 3) is that each term of the equation is equal to a constant and that 
those constants add up to E. Let’s call Ex, Ey and Ez those constants. Write 
down the 3 separate equations for the X, Y and Z functions. 

solution: 
Let’s use the analytical expression ψ(x, y, z) = X(x)Y (y)Z(z) and inject this 

expression in the Schrodinger equation. Deriving ψ(x, y, z) = X(x)Y (y)Z(z) 
partially with respect to x (leaving y and z constant) gives us ∂ψ(x,y,z) = ∂x 
dX(x) Y (y)Z(z), and the same kind of result is valid when deriving partially dx 
with respect to y and z. Using this result, we find that the Schrodinger equa­
tion can be written as: 
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− h̄
2 d2 X(x) Y (y)Z(z) + X(x) d

2Y (y) Z(z) + X(x)Y (y) d
2Z(z) = 2m dx2 dy2 dz2 

EX(x)Y (y)Z(z) 

Dividing the equation by X(x)Y (y)Z(z) gives us: 

− h̄
2 1 dX + 1 dY + 1 dZ = E2m X dx Y dy Z dz 

1 dY 1 dZ Now if we move the Y dy and Z dz terms to the right-hand side of the equation, 
we see that: 

− h̄
2 1 dX = E + h̄

2 1 dY + 1 dZ 
2m X dx 2m Y dy Z dz 

The function on the left-hand side is only a function of x, whereas the right-
hand side is only a function of y and z. Moreover this equation is true for 
any x, y and z. So the only way we can achieve this is by taking the two sides of 
this equation equal to a given constant Ex. We then end up with the following 
two equations: 

h2 � � 
¯ 1 dX 
2m X dx− = Ex 

h̄2 1 dY + 1 dZ E + 2m Y dy Z dz = Ex 

Rearranging the second equation, we find: 

h̄2 1 dY + 1 dZ − 2m Y dy Z dz = E − Ex 

Repeating the whole argument on this new two-dimensional Schrodinger-like 
equation, we can conclude that we must have a second constant Ey such that: 

h2 

2m Y dy 
¯ 1 dY − = Ey 

and 

h2 � � 
¯ 1 dZ − 2m Z dz = E − Ex − Ey 

Calling Ez the constant on the right-hand side of the previous equation, we 
can finally write the 3 equations that we extracted from the full Schrodinger 
equation: 

− h̄
2 � 

1 dX 
� 

= Ex2m X dx 

− h̄
2 1 dY = Ey2m Y dy 

h2 � � 
− ¯ 1 dZ = Ez2m Z dz 

We also have E = Ex + Ey + Ez. 
The general solution for those three equations should be: 

X(x) = Ax sin(kxx) + Bx cos(kxx) with kx = 2mEx • 
h̄2 

2mEy • Y (y) = Ay sin(ky y) + By cos(kyy) with ky = 
h̄2 
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Z(z) = Az sin(kz z) + Bz cos(kz z) with kz = 2mEz •	
h̄2 

5) Use the boundary conditions found in question 2) to find the allowed values 
for Ex, Ey and Ez in terms of integers nx, ny and nz. Find which constants 
in the set (Ax, Ay, Az , Bx, By, Bz) are zero and simplify the general solutions 
for X, Y and Z. Finally write down the allowed total energies (the eigenen­
ergies) E(nx, ny, nz ) and the associated allowed wavefunctions (the eigenfunc­
tions) ψnx,ny ,nz (x, y, z). 

solution: 
The boundary conditions found in question 2) were X(0) = X(Lx) = 0, 

Y (0) = Y (Ly) = 0 and Z(0) = Z(w) = 0. Using the analytical expressions 
given above for the X, Y and Z functions, we find that: 

•	 First, using X(0) = 0, Y (0) = 0 and Z(0) = 0, we easily conclude that 
Bx = By = Bz = 0 

•	 Second, using X(Lz) = 0, Y (Ly) = 0 and Z(w) = 0 we conclude that 
Ax sin(kxLx) = Ay sin(kyLy) = Az sin(kz w) = 0 

In this second conclusion, we realize that we cannot take the constants Ax, 
Ay and Az to be zero, otherwise the X, Y and Z functions would be zero 
everywhere and the wavefunction itself would be zero everywhere. We must 
then have sin(kxLx) = 0, sin(kyLy ) = 0 and sin(kzw) = 0. But since the sin 
function is only zero when the argument of the function is an integer multiple 
of π, we find that there must exist a set of three integer numbers (nx, ny, nz ) 
such that: 

kxLx = nxπ, kyLy = ny π and kz w = nz π 

Finally we use the relationship between k and E (E = h̄
2k2 

) to give the allowed 2m 
eigenenergies: 

h̄2 n 2 
x π

2 n 2 
y π

2 

+ n 2 
z π

2 

E(nx, ny, nz ) = Ex + Ey + Ez = 2m L2 + L2 w2 
x y 

The corresponding eigenfunctions are: 

ψnx,ny ,nz (x, y, z) = AxAyAz sin(nxπ L
x 
x 
) sin(nyπ L

y 
y 
) sin(nzπ w

z ) 

At this stage we see that we still have some unknowns in the problem, 
namely the normalization constants in front of the eigenfunctions. Let’s denote 
by Anx,ny ,nz the constants in front of ψnx,ny ,nz (x, y, z). We know from physical 
intuition that the probability of finding the electron inside the box is 1. So for 
any eigenfunction, we must have: � Lx 

� Ly 
� w 

ψ∗ (x, y, z)ψnx,ny ,nz (x, y, z)dxdydz = 1 
0 0 0 nx,ny ,nz 

This is the normalization condition for the eigenfunctions. 
6) Using the analytical expressions for the eigenfunctions obtained in ques­

tion 5), prove that: 

Anx,ny ,nz = LxL
8 

y w = V 
8 , where V is the volume of the box 
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solution: 
Using the shorthand notation Anx,ny ,nz for the constants AxAyAz , we can 

rewrite the eigenfunctions as: 

ψnx,ny ,nz (x, y, z) = Anx,ny ,nz sin(nxπ L
x 
x 
) sin(ny π L

y 
y 
) sin(nz π w

z ) 

Now we inject this expression in the normalization condition and find: � 
0 
Lx 

� 
0 
Ly 

� 
0 
w |Anx,ny ,nz |2 sin2(nxπ L

x 
x 
) sin2(nyπ L

y 
y 
) sin2(nzπ w

z )dxdydz = 1 

This 3 dimensional integral can be separated in a product of three one dimen­
sional integrals. The one dimensional integral over the x coordinate is: � Lx sin2(nxπ x )dx

0 Lx 

To integrate this integral, we use the following well-known trigonometric equal­
ity: sin2(u) = 1−cos(2u) and the fact that cos(u)du = sin(u). Hence we have: 2 � 

0 
Lx sin2(nxπ L

x 
x 
)dx = L2 

x − 12 [sin(2nxπ) − sin(0)] 

Now since nx is an integer, sin(2nxπ) is zero and so is sin(0). In the end, the 
one dimensional integrals reduce to: � 

0 
Lx sin2(nxπ L

x 
x 
)dx = L2 

x 

� 
0 
Ly sin2(ny π L

y 
y 
)dy = L2 

y 

w wsin2(nz π x )dx = 
0 w 2 

And we easily conclude that: 

|Anx,ny ,nz | = LxL
8 

y w 

As in the case of question 3)a) of exercise 1, we see that an eigenfunction is 
defined up to a global phase, so we can choose Anx,ny ,nz to be real and equal 

to 8 .LxLy w 

2.2 When can we talk about a 2D gas? 

Now that we have solved our problem mathematically, let’s have a closer look 
at the energy eigenvalues: 

h̄2π2 
( n 2 

x 
n 2 

y + n 2 
z h2 

( n 2 
x 

n 2 
y + n 2 

zE(nx, ny, nz ) = 2m L2 + L2 w2 ) = 8m L2 + L2 w2 ) 
x y x y 

1) What is the energy difference ΔEx between state E(nx +1, 0, 0) and state 
E(nx, 0, 0)? In the same way, calculate ΔEy = E(0, ny + 1, 0) − E(0, ny, 0) and 
ΔEz = E(0, 0, nz + 1) − E(0, 0, nz ). 

solution: 
We use the formula for the einergy eigenvalues to find: 

h2π2 h2π2
ΔEx = E(nx + 1, 0, 0) − E(nx, 0, 0) = 2

¯
mL2 ((nx + 1)2 − nx

2 ) = 2
¯
mL2 (2nx + 1) 

x x 
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h̄2π2
ΔEx = 2mL2 (2ny + 1) 

y 

ΔEz = h̄
2π2

2 (2nz + 1) 2mw

2) Calculate the ratios ΔEz and ΔEz .ΔEx ΔEy 

solution: 
From question 1), we easily conclude that: 

ΔEz = ( Lx )2( 2nz +1 )ΔEx w 2nx+1 

ΔEz +1= ( Ly )2( 2nz )ΔEy w 2ny +1 

3) Now imagine that the box is very elongated in the x and y directions, i.e 
Lx and Ly are macroscopic, and very thin in the z direction. To make things 
clearer, let’s take w ∼ 10nm and Lx = Ly ∼ 1µm, which are typical dimensions 
in semiconductor/metal junctions. In real devices the ratios 2nz +1 and 2nz +1 

2nx+1 2ny +1 

are of order unity. Knowing this, give a typical value for the ratios calculated 
in question 2). 

solution: 
From the ratios found in question 2), and knowing that 2nz +1 and 2nz +1 

2nx+1 2ny +1 

are of order unity, we conclude that: 
ΔEz = ΔEz ∼ ( Lx )2 
ΔEx ΔEy w 

4) From the numerical result of question 3), what can you deduce in terms 
of level spacings in x and y directions compared to the level spacing in the 
z direction? In which direction(s) of space can you consider that the allowed 
energy states form a quasi-continuum and in which direction(s) the allowed 
energy levels are quite well separated? 

solution: 
From question 3), we see that the level spacing in the z direction are of order 

( Lw 
x )2 greater than in directions x and y. The levels are much closer in energy in 

the x and y directions than in the z direction, so a quantum particle will ”feel” 
this difference, and the motion in the z direction will be quantized. A small 
thermal energy will be sufficient to have the quantum particle jump from one 
energy state to the next in the x and y directions, so we can safely describe the 
energy states as forming a quasi-continuum in the x and y directions. 

When talking about real devices (that are always 3-dimensional), we can 
speak of a 2D gas of electrons when the motion of each electron is ”frozen” 
in one direction (let’s call it the z direction) and not in the two others (x and 
y). By ”frozen”, we mean that the energy difference between the energy states 
caracterized by nz = 1 and nz = 2 is bigger than any typical thermal energy 
kB T . 

5) Calculate the energy difference ΔEz = E(0, 0, 2) − E(0, 0, 1) in a GaAs 
device for which the width w is 10nm and the mass of the electron is m∗ = 
0.067m, where m is the mass of the electron in vacuum (m= 9.109 ∗ 10−31kg). 
What is the temperature T corresponding to this energy difference, i.e such that 
kB T = ΔEz? Is the motion of the electron in the z direction ”frozen” for this 
system when operated at room temperature (300K)? 

solution: 
We find that: 
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ΔEz = E(0, 0, 2) − E(0, 0, 1) = 3 h̄
2π2 

2mw2 

Plugging in the values for m and w, we end up with: 

ΔEz = E(0, 0, 2) − E(0, 0, 1) ≈ 2.7 ∗ 10−20J which is about 0.17 eV 

The corresponding temperature T is T ≈ 0.17eV ≈ 1950K! So we would need to kB 

heat the device up to temperatures close to 1900K to start seeing higher energy 
levels in the z direction to be populated. We can safely say that the motion 
of electrons in this device operating at 300K is ”frozen” in the z direction, and 
that we are dealing with a 2D electron gas (if dimensions in x and y directions 
are much bigger than in the z direction). 
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