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Homework # 6, solution
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Homework is due on Thursday November 1st, 5pm

1 Thermodynamics of the free electron gas in
3D

1.1 Physics at T=0K

Let’s consider a parallepiped of sides L., L, and L, with free electrons inside it.
In the free electron gas model, those electrons do not interact with each other,
and so we can consider them one by one such that the many-body Schrodinger
equation involving N electrons can be simplified into N independant Schrodinger
equations for each electron. This simplification is the general framework for the
band theory of solids. In the case of the free electron model, we go even
further in the simplification by taking the effective periodic potential felt by an
electron, namely V' (7), to be zero. So the Schrodinger equation for one electron
is simply:
— 45 V2() = B()

Along with the Schrodinger equation, we need some boundary conditions to fully
define our problem. In this case we will take the standard Born-Von Karman
boundary conditions. So we impose that ¢ (7+L,€;) = ¢¥(7), ¥(F+Lyéey) = ()

and Y(7+ L.€,) = (7). Using this model, we have already solved for the
eigenenergies and corresponding eigenfunctions. The answer is:

N h2E? : L _ 2m > 27 > 27 >
E(k) = Sm Wlth k = anex + fynyey + anez

where ng,n, and n, are integers. The energy levels are discretized but the

spacing between those levels is so small that we can actually consider k to vary
continuously. The corresponding eigenfunction is:

U = e

is a plane wave and V is the volume of the solid V' = L, L, L. This wavefunction
is normalized over the volume of the solid. In order to find the ground state of

the system, we then need to fill up each of the eigenstates E(k) with 2 electrons
with opposite spin until we reach the Fermi energy Ep.

1) Give an expression for the total energy of the system as a sum over all
the occupied k states. Use the standard relation that we saw in recitation,



to transform this discrete sum into an integral over the continuous variable k.
There is no need to calculate the total energy at this point. We have
now two equivalent expressions for the total energy of a free electron gas.

solution:

The total energy of the free electron gas is simply the sum over all the
occupied k states of twice the energy of that k state (because of the spin
degeneracy). The k states are occupied up to the Fermi wavevector kF So we
have:

E=FE,,=2 ZIIEIISWQFH E(E) over occupied k states

This discrete formula for the total energy can be easily transformed into an inte-
gral formula through the standard substitution that i showed you in recitation:
Yi= # [ dk. So we also have:

E=FE,;=2 E(E)dlg over occupied k states

7‘/ — —
(2m)? fIIkHSIIkFII

2) If we count all the occupied states up to the Fermi energy (remembering
that each k state can accomodate 2 electrons because of the spin degeneracy),
then we find the total number of electrons. Express this number N as a sum
over all the occupied k states? Give the equivalent formula using an integral
over the continuous variable k. Calculate this number and give an answer in
terms of the Fermi wavevector kr and another in terms of the Fermi energy Ep.

solution:
The total number of electron is simply obtained by summing the number of
occupied states from ||k|| = 0 to ||k|| = ||kr]]:

N =22 <ifen !
The equivalent formula using the continuous variable k is simply:

N = 1dk

7‘/ — —
20 JiEn<iie)

We see that this second formula tell us that the total number of electron is
simply equal to twice the volume of the Fermi sphere of radius kp = ||kr||. So
we find right-away that:

N_

V_4
(2m)®

27,2
The Fermi energy expressed with the Fermi wavevector is simply: EFp = hgﬁf .
So we see that the total number of electron expressed as a function of the Fermi
energy is:

N = g (2572)%2

3) Calculate the total energy of the system and give your answer in terms
of kr, V and fundamental constants like 7, A and m. Use the result for N in
question 2) to express the total energy as NEp with a numerical prefactor in
front that you must find.



solution:
Given the integral expression for the total energy obtained in question 1), and

the spherical symmetry of the function E(k), i will use the spherical coordinates
in k space to calculate the integral:

E =2V [

R%k? 51, _ _VAR?
W 0 47Tk2 dk— k'?;v

2m 107m2m

Given that the total number of electron can be written as N = B%ki’,, we see
that the total energy can be rewritten as:

E=2NEp

4) In order to give you some orders of magnitude for the different physical

quantities defined in the free electron gas model, express the following quantities
N

exclusively in terms of the electron density n = {7:

e The Fermi energy Er

2mEF
h2

e The Fermi wavevector krp =

e The Fermi temperature Tr = f—;

hkp

e The Fermi velocity vp = =

Now calculate numerically each of those values for the following metals: Au
(n ~5.9%10%® m=3), Na (n ~ 2.54 % 10%® m=3) and Al (n ~ 18.07 * 10%® m=3)

solution:
Using the relationship we established between the total number of electron
and the Fermi wavevector, we can easily inverse it and find:

kp = (3m2n)/3
Plugging in this value for kr in the definition of the Fermi energy we find:
Ep = & (3n%n)?/3

The Fermi temperature is obviously given by Tp = %’ so we find:

Ty = Tf;zB (3m2n)2/3

_ hkp

m

and the Fermi velocity is vp = 22 so we end up with:

vp = L (3n2n)l/3

The numerical values for the three different metals Au, Na and Al are the
following:

o kp isabout 1.20%10'% m~! for Au, 9.09x10° m~! for Na and 1.75%10'% m~!
for Al

e Er is about 5.50 eV for Au, 3.15 eV for Na and 11.65 eV for Al
e T is about 64000 K for Au, 36500 K for Na and 135300 K for Al
e vp/cis about 0.0046 for Au, 0.0035 for Na and 0.0067 for Al



1.2 Physics at room temperature

In the free electron gas model, electrons are independant particles, meaning
that they do not interact with each other. Since they are independant particles,
the calculation of thermodynamic quantities becomes easy. We will see how
to generalize the zero temperature mathematical expressions for some physical
quantities of interest when one deals with finite temperatures.

1) What is the total density of states D(F) for a free electron gas?

solution:
The density of states is given by the following formula:

D(E) =25 [ 6(E - E(’f))dk—2<2w>3 Jo@)-5 @

The gradient of E(E) is simply % E and so the norm is h%k The isosurface

m

E(K) = E is simply a sphere of radius k(E) = 2nE . The value of IVE)|]

over this surface being a constant for a given E, the mtegral gives us simply the
surface of the sphere: 47k(E)?. When one puts all the term together, one finds:

D(E) = 2772 ( 72 )3/2\/7

2) Using the density of states, express the total number of electrons as an
integral over the energy range [0, Er]. Calculate this number (again!) and
express your answer in terms of the Fermi energy.

solution:
We saw in recitation that given the physical meaning of the density of states,
the total number of electrons can be evaluated by the following integral:

= Jp,, D(E)E

here the minimum energy occupied is simply E,.;, = E(0) = 0. Using the
expression for the total density of states given in question 1), we can calculate
this integral and find:

f 27r2 h 3/2\/7dE_37r2(27rfLLEF)3/2

This expression is exactly what we found in the first part of the homework so
this way of calculating the total number of electron is absolutely correct.

3) At finite temperature, the probability to occupy a state of energy E is no
longer 1 for E < Ep and 0 for E > Ep but rather the Fermi factor ,f(E,T),
whose value is:

e’“BT+1

We see that this function goes to 1 for £ < g and 0 for £ > pu when T
goes to zero (u is the chemical potential). So we immediately realize that
limp_ou = Ep. Give an expression for the total number of electrons N (this
number is of course the same at any temperature because we don’t loose any



electron) as an integral over the energy range [0, +oo| involving the density of
states and the Fermi factor.

solution:

The total number of electron is given by the extension of the formula in
question 2) to finite temperature. The minimum energy is still 0 but because
of the Fermi factor the maximum energy is now 4+oc. The integral formula is
then:

N = [*° D(BE)f(E,T)dE

4) The integral formula for the total number of electrons at any temperature
obtained in question 3) is actually a way to determine the chemical potential
1 as a function of N and T. At room temperature we can calculate the Taylor
expansion of the chemical potential around the zero temperature limit and find:

u(®) = Br {1 - 53 (%5)*]

Calculate the correction to Fr at room temperature (300K) for Gold. What do
you think of this correction on the range of temperatures going from 0K to the
melting temperature?

solution:

Using the above formula, with 7" = 300 K and the value of the Fermi energy
for Gold found before (5.53 €V), we see that the correction at 300K is ridiculus:
about 0.000018! Even at the melting temperature of gold (T}, = 1338 K), we
have a correction of 0.000358! We conclude that for a free electron metal, the
chemical potential is always equal to its value at OK even around the melting
temperature.

5) In the same way we calculated the total number of electrons at finite
temperature, we can also express the total energy of the system at finite tem-
perature. Give an expression for this total energy as an integral over the energy
range [0, +o0] involving the Fermi factor f(E,T), the density of states D(FE),
and the energy E. If one carries out a Taylor expansion of the total energy
around the zero temperature limit, one can find the following result:

Eiot(T) = Eyot (T = 0K) {1 4 %(%)2}

From the expression for Eiqt(T = 0K) obtained in question 3) of the first sec-
tion and the above expression, show that the heat capacity per unit volume has
a linear dependance on the temperature T7? Calculate the prefactor in this linear
relationship for Gold, Sodium and Aluminum and compare with the experimen-
tal results: 62 Pa.K 2 for Gold, 58 Pa.K 2 for Sodium and 135 Pa.K 2 for
Aluminum.

solution:
The total energy at finite temperature can be calculated as follows:

E = [7° D(E)f(B,T)EdE



In the low temperature limit, this total energy is given by the following expres-
sion:

2
Eiot(T) = Eyot (T = 0K) {1 + %(%)2}

The heat capacity per unit volume is given by the following thermodynamic
formula:

OE; . (T)
ev(T) = 3~ vy

In our case we find the following result for cy (T'):

2
cv(T) = Gng
where use has been made of the formula Ei, (0K) = %N Ep. The linear coefhi-
ciant is then given by:

2 k2
_n’ kp
T= 3 "NE,

Plugging in the values for n and Er found previously, we end up with:
e v =626 Pa.K~2 for Au
e v =473 Pa.K~2 for Na
e v=091.1 Pa. K2 for Al

We can see that despite the roughness of the free electron gas model, the correct
order of magnitude for v is found. Sometimes, like in the case of Gold, we even
have quantitative agreement. But one should be carreful and not say that Gold
can be described as a free elctron gas model. Other physical properties derived
from this model might be in disagreement with experiment even for Gold. All
those numbers tell us, is that the physical idea to see the conduction electrons
as almost free is pertinent.

2 The nearly free electron model

We have seen in class, when we analyzed the Schrodinger equation and expressed
it in a basis of plane waves, that the ”"master equation”a isﬂa matrix equation
where one has some diagonal kinetic energy terms like W and off-diagonal
terms like V5 (See equation (2.23) in the Singleton Book). The coefficiants
V5 are nothing else than the Fourier coefficiants of the periodic potential when

one expands it as a Fourier series like:

V(F) =Yg Vae'™

In this little problem, we are interested to see what happens at the Brillouin Zone
boundary in a 1D system, i.e for a k vector close to k = 7, when one goes from
a free electron V(z) = 0 to a very weak potential where V(z) = 2V cos(2Ez)
with 0 <V <« 1.

1) Write down the ”master equation” (as a matrix equation) for a free elec-
tron gas where V(x) = 0. In this equation the ”vector” looks like that:



Ck—qz
Ck—2z
Ck
Ck+2Z
Ck+4Z

solution:
The master equation looks like the following:

Vg E(k—g)—E Vg Vag "' Ck—g
. Vi, E(k)—E v, Ch =0
Vg Vg Ek+g)—E V, Chtg
where g = 27” and E(k) = % For the free electron this equation is such

that all the V;,4 are zero. Then the eigenenergies are the following dispersions:
E(k + ng).

2) Close to the Brillouin Zone boundary k = 7, can you see in the hamilto-
nian matrix found in question 1), two kinetic energy terms that have the same
value? In this case we say that the point k = 7 is 2-fold degenerate. If you
simplify the infinite hamiltonian matrix to a 2 x 2 matrix with only those two
kinetic energy terms, what will be the two band dispersions around k = %7 Plot
those two bands around k = 7.

solution:

Close to the Brillouin Zone boundary k = 7, we see that the following two
dispersions are close in kinetic energy: E(k) and Ej_4. The simplified ”master
equation” becomes a 2 x 2 matrix equation.

(E(k_og)_E E(k;)fE ) ( o ) =0

The solutions are trivially given by: E(k) = h;ff and E(k — g) =
Those two solutions join at k=T

a’

h2(k—g)®
2m

3) Re-write the "master equation” but this time for the potential discussed
above V(r) = 2V cos(%2x). In this infinite matrix equation, we will focus on
k vectors around the Brillouin Zone boundary k = 7. Because at k = 7 the
energy level in the case of the free electron model is 2-fold degenerate, all we
need to keep in the hamiltonian matrix to study what happens around k = =
is the two lines with an almost equivalent kinetic energy. Simplify the ”master

equation” for the weak potential to a 2 x 2 matrix equation.

solution:
Re-writting the "master equation” and keeping the V; and V_, terms, we
find:



Eli—g)-E s ) _g
V_g E(k) —F Ck
Here we see from the expression of the potential V (r) = 2V cos(2Xz) = Ve +
Ve ™" that V, = V_, =V and all the other terms are zero.

4) Find the energy eigenvalues (which corresponds to two bands around
k = Z) for this simplified 2 x 2 hamiltonian matrix. Plot those two band
dispersions around k£ = Z. What is different with respect to the free electron
model? What is the value of the "energy gap” at k = 7 between the two bands?

What is the slope of the two bands at k= 77

solution:
The eigenvalue equation in question 3) gives us that:

e (k) =  { E(k) + B(k — g) = /(B(R) — Bk — 9)? +4V7}

A plot of those energy dispersion with k close to the Brillouin Zone boundary
is shown on figure 1.

FyK)L, E (k)

- kinunitof 1fa
m

Figure 1: Band dispersion when a small perturbing periodic potential is present.
We see clearly a gap opening between the two dispersions at k = 7.

Remark: everything done in this exercise is discussed in detail in
chapter 3, pages 23 to 26 of the Singleton book. Take a look at it
and try to rederive everything in this exercise without looking at the
book. The physical consequences of this analysis are very important
and should be remembered.



