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Homework # 7 

November 4, 2007


Homework is due on Thursday November 8st, 5pm 

1 Intrinsic semiconductor 

Let us consider a 2 band intrinsic semiconductor. From the microscopic point of 
view this semiconductor is caracterized by a valence density of states, Dv (E), 
a conduction density of states, Dc(E), and a band gap Eg = Ec −Ev. Using 
those density of states and the Fermi factor f(T, E) = (E−

1 
µ)/kB T , we can 

1+e

easily express the volumic density of electrons in the conduction band, nc(T, µ), 
and the volumic density of holes in the valence band, pv(T, µ): 

nc(T, µ) = 
� +∞ 

f(T, E)Dc(E)dE and pv(T, µ) = 
� Ev (1 − f(T, E))Dv(E)dE

Ec −∞

Those formulas are extremely general and always applicable in practice. Now 
we will use the hypothesis of non-degeneracy, meaning that the chemical 
potential is far away in terms of thermal energy from the top of the valence 
band and the bottom of the conduction band: 

µ − Ev >> kB T and Ec − µ >> kB T non-degeneracy conditions 

For intrinsic semiconductors like Silicon, Germanium and Galium Arsenide 
those conditions of non-degeneracy are very well satisfied. Using this hypothesis, 
we see that the Fermi factor can be simplified to a Maxwell-Boltzmann factor 
(here in the case where E > µ): 

f(T, E) = (E−
1 
µ)/kB T becomes f(T, E) ≈ e−(E−µ)/kB T 

1+e

1.1	 Some general results for any Dc(E) and Dv(E) and both 
intrinsic and extrinsic semiconductors 

1) Using the non-degeneracy conditions, express the densities of electrons 
and holes, nc(T, µ) and pv(T, µ), as follows: 

• nc(T, µ) = Nc(T )e−(Ec−µ)/kB T 

• pv(T, µ) = Pv(T )e−(µ−Ev )/kB T 

Find an integral expression for both Nc(T ) and Pv (T ). What happens when 
one multiplies nc(T ) by pv (T )? 
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Important Remark: This relation is called the law of mass action. It is 
satisfied for both intrinsic and extrinsic semiconductors. All the doping does is 
to introduce some states inside the band gap, and shift the chemical potential, 
but this does not change the densities of states Dv(E) and Dc(E) so it does not 
change the law of mass action. 

solution: 
In the case of electrons, we see that the energy E is always greater than the 

bottom of the conduction band. So if we use the non-degeneracy condition for 
the conduction band, we have E − µ > Ec − µ >> kB T , and we can neglect the 
1 in front of the exponential eβ(E−µ) safely such that we end up with: 

nc(T, µ) ≈ 
� +∞ 

Dc(E)e−β(E−µ)dE
Ec 

Now in the exponential we write E − µ = E − Ec + Ec − µ and we find: 

nc(T, µ) ≈ ( +∞ 
Dc(E)e−β(E−Ec))e−β(Ec−µ) 

Ec 

In the case of holes, we have a completely symmetrical situation. We know 
that: 

pv(T, µ) = 
� Ev (1 − f(T, E))Dv (E)dE = 

� Ev Dv (E) 
1+eβ

1 
(µ−E) dE −∞ −∞ 

But if we have µ − E > µ − Ev >> kB T , then we can safely neglect the 1 in 
front of the exponential, and we end up with: 

pv(T, µ) ≈ ( 
� Ev Dv (E)e−β(Ev −E)dE)e−β(µ−Ev ) 
−∞ 

The expressions for Nc(T ) and Pv (T ) are then: 

Nc(T ) = 
+∞ 

Dc(E)e−β(E−Ec )dE and Pv(T ) = 
� Ev Dv (E)e−β(Ev −E)dE

Ec −∞ 

When one multiplies nc(T, µ) by pv(T, µ), one realizes that the product is in-
dependant of the chemical potential! 

2) Now if we consider an intrinsic semiconductor, what is the relationship 
between nc(T, µ) and pv (T, µ)? Use this relationship to express the chemical 
potential as a function of T only. What is the chemical potential at 0K? What 
is the order of magnitude of the chemical potential shift at finite T from its 
value at T = 0K? In which direction does the chemical potential shift from its 
value at T = 0K when one increases the temperature? 

solution: 
In the case of an intrinsic semiconductor absolutely no impurities are present. 

Therefore when one electron is thermally excited through the band gap, exactly 
one hole is created in the valence band. We conclude that at all temperatures 
the total number of conduction electrons is strictly equal to the total number 
of valence holes. 

For intrinsic semiconductors, pv (T, µ) = nc(T, µ) 

Using this relation plus the hypothesis of non-degeneracy we find: 

µ(T ) = Ec+Ev + 1 kB T ln( Pv (T ) )2 2 Nc(T ) 
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We see that the chemical potential goes to the middle of the band gap when the 
temperature goes to zero: 

µ(T = 0K) = Ec+
2 

Ev for intrinsic semiconductor 

The typical value for the chemical potential shift at finite temperature is of 
order kB T . On this formula, we can also conclude that the chemical potential 
moves away from the band with the highest effective density of states. 
For example if the effective density of states in the valence band is greater than 
the one in the conduction band, Pv (T ) > 1, then the logarithm is positive and Nc (T ) 
the chemical potential moves up in energy, i.e it moves towards the bottom of 
the conduction band. 

1.2	 Introducing the parabolic approximation for the va­
lence and conduction bands 

3) By using the following results from the parabolic approximation of the 
valence and conduction bands: 

Dc(E) = 1 
2π2 ( 

2m

h̄2 

∗ 
c )3/2

√
E − Ec and Dv(E) = 1 

2π2 ( 
2m

h̄2 

∗ 
v )3/2

√
Ev − E 

calculate explicitly Nc(T ) and Nv(T ). Then use this to calculate the chemical 
potential µ as a function of T , m∗ 

c , mv
∗, Ev and Ec. By taking the origin of the 

energy axis in the middle of the band gap, calculate the chemical potential shift 
in eV at 300K for GaAs (m∗ 

c = 0.063 m and m∗ 
v = 0.505 m, where m is the mass 

of a free electron). 

solution: 
From the formula found in question 1) plus the analytical form for the den­

sities of states, we find: 
+∞ √

xe−xdx 
∗+∞ 

Ec 
Dc(E)e−β(E−Ec)dE = 1 

2π2 ( 
2m kB T )3/2Nc(T ) = c 

h̄2 0 

This integral is a classical gaussian integral (or you can use Mathematica to find 
it), and its value is: 

√

2 
π , such that the final answer is: 

Nc(T ) = 4
√

π
π 
2 ( 

2m∗ 
c kB T )3/2 
h̄2 

Similarly we find for the holes: 

Pv(T ) = 4
√

π
π 
2 ( 

2m∗ 
v kB T )3/2 
h̄2 

By plugging-in the values for Pv(T ) and Nc(T ) found above inside the general 
formula for the chemical potential of an intrinsic semiconductor, we easily find 
that: 

∗ 

µ(T ) = Ec +Ev + 1 kB T ln( Pv (T ) ) = Ec +Ev + 3 kB T ln( m2	 2 Nc(T ) 2 4 m )v 
∗ 
c 

Using the above formula it is easy to calculate the shift in chemical potential 
of GaAs from the zero temperature value to room temperature: 

∗
Δµ(0 300) = 3 kB ln( m4	 m )ΔT ≈ 0.040 eVv 

∗→ 
c 

This number should be compared to the band gap of GaAs at 300K which is 
1.43 eV. Exactly like in the case of metals, the shift in chemical potential with 
temperature for a pure semiconductor is very small. 
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2 p-doped semiconductors 

We will now consider a semiconductor homogeneously doped with acceptors. 
Those acceptors are what we call ”shallow impurities” in the sense that their 
presence inside the host semiconductor is responsible for the appearence of al­
lowed energy states for holes right above the top of the valence band. The con­
centration of acceptors is Na and the binding energy of the holes is �a = Ea −Ev. 

2.1	 qualitative description of the physics with increasing 
temperature 

4) Describe qualitatively what happens to the majority carriers (in this p-
doped semiconductor the majority carriers are the holes) as one increases slowly 
the temperature T from 0K to high temperature. Use the terms : freezing-out 
regime, saturation regime and intrinsic regime to specify the different behavior 
regimes of the doped semiconductor with temperature. 

solution: 
At very low temperature, everything is ”frozen”. This means that the 

acceptor levels are all occupied by one hole, there is no hole in the valence band 
and the conduction band is empty of electrons. This region in temperatures is 
called the ”freeze-out” region. 

At intermediate temperatures, T is high enough to excite holes localized 
around impurities into the valence band. The typical temperature in this region 

�acalled the ”saturation” region is Ta = kB 
. 

At high temperature, T is so high that direct exitation of electrons from 
the valence to the conduction band is possible. When operating in this region, 
the doped semiconductor behaves as if it would be instrinsic because the density 
of carriers in the conduction band becomes quickly much more important than 
the concentration of impurities. This region is the ”intrinsic” region. 

2.2	 quantitative calculation of the majority carrier density 
with temperature 

5) Let us now construct the curve ln(pv(T )) as a function of 1/kB T . We 
will study the different regimes that you outlined above and find the expression 
for the chemical potential and the volumic density of holes in the valence band 
at different temperatures. To do this we will establish a general balance 
equation for the charges in the system. We denote by P (Ea, T ) the probability 
for a hole to occupy an acceptor level at temperature T. Show that we have 
the following equation between the total density of electrons in the conduction 
band nc(T, µ), the total density of holes in the valence band pv(T, µ) and the 
concentration of acceptor impurities Na: 

nc(T, µ) + Na(1 − P (Ea, T )) = pv(T, µ) balance equation 

solution: 
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A semiconductor, may it be doped or not, carries no extra charge. So the 
total number of negative charges in the system must always balance the total 
number of positive charges. The only negative charges in a p-doped semiconduc­
tor are electrons and ionized impurities. The only positive charges in a p-doped 
semiconductor are holes. So the total number of holes in the valence band must 
balance the total number of electrons in the conduction band plus the total 
number of ionized impurities at a given temperature. Another way to see this 
is to say that a hole is created in the valence band by only two possible mecha­
nisms: one in which an electron has been directly excited from the valence band 
to the conduction band, and one in which a hole has left a neutral impurity to 
go into the valence band. Using this argumentation, we see that: 

nc(T, µ) + Na(T, µ) = pv (T, µ) 

where i used the notation Na(T, µ) to indicate the number of ionized acceptors 
at a given temperature. This number is simply the product of the total number 
of impurities multiplied by the probability that one impurity is ionized. But 
this probability is nothing more than the probability for a hole not to occupy 
an impurity state. This probability is then just 1 − P (Ea, T ). In the end the 
balance equation takes the following form: 

nc(T, µ) + Na(1 − P (Ea, T )) = pv(T, µ) 

6) At very low temperature, which term in the balance equation can 
we safely neglect and why? The probability P (Ea, T ) is given by P (Ea, T ) = 

1 . In the low temperature limit the chemical potential sits between µ−Ea

1 kB T

2 e +1 

the top of the valence band Ev and the acceptor level Ea. Simplify the term 
1 − P (Ea, T ) to a single exponential term up to a constant in front, and then 
use this simplified expression to show that the chemical potential can be written 
as follows (to obtain this expression you need to use the general expression for 
pv(T, µ) found in the first part of the problem set): 

µ(T ) = Ea+Ev 1 kB T ln( Na )2 − 2 2Pv (T ) 

solution: 
At very low temperature, because of the Fermi factor, there is no chance 

whatsoever that an electron will be thermally excited across the band gap. 
So nc(T, µ) may be safely neglected. The balance equation simplifies into the 
following: 

1 e β(µ−Ea) )Na 
2 e

β(µ−Ea ) = Pv (T )e−β(µ−Ev 
2 1+ 1 

Now we know that Ev < µ < Ea, and so as T goes to zero β(µ − Ea) goes to 
−∞. We can then neglect the exponential in the denominator of the left-hand 
side. The equation then reduces to: 

Na 
1 eβ(µ−Ea) = Pv(T )e−β(µ−Ev ) 
2 

which gives us right away: 

µ(T ) ≈ Ev +Ea − 1 kB T ln( Na )2 2 2Pv (T ) 
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7) Using the expression for the chemical potential in 6), express ln(pv(T, µ)) 
as a function of T only. What is the coefficiant of the linear dependance of 
ln(pv (T, µ)) with 1/kB T ? This regime is called the freezing-out regime. 

solution: 
Using the equation for the chemical potential established in question 6), plus 

the general expression for pv (µ, T ), one finds: 

ln(pv (µ, T )) = ln(Pv(T ))−β(µ−Ev) = ln(Pv(T ))−β( Ea−Ev − 1 kB T ln( Na ))2 2 2Pv (T ) 

This equation can be further simplified: 

ln(pv(µ, T )) = 2
1 ln( NaP

2 
v (T ) ) − �2 

a ( kB 

1 
T ) 

The coefficiant of the linear dependance in 1/kB T is − �a .2 

8) At intermediate temperatures, where all the impurities have been 
ionized but no electrons have been promoted from the valence to the conduction 
band, simplify the balance equation and find an expression for the chemical 
potential. Show that in this regime called the saturation regime, ln(pv(T, µ)) 
is indepandant of the temperature. Define a temperature that will caracterize 
this intermediate regime. 

solution: 
At intermediate temperatures, all impurities have been ionized and so we 

have Na(1 − P (Ea, T )) ≈ Na. nc(µ, T ) is again negligible and the balance 
equation reduces to: 

Na = Pv(T )e−β(µ−Ev ) 

From this we right away conclude that: 

µ(T ) = Ev − kB T ln( Na )Pv (T ) 

We also deduce from the above equations that the concentration of holes in the 
valence band is independant of the temperature. We trivially have ln(pv(µ, T )) = 
ln(Na). The caracteristic temperature above which most of the impurities get 

�aionized is Ta = kB 
. 

9) At very high temperature, electrons get promoted from the valence 
band to the conduction band. The density of impurities is then negligeable. Use 
the balance equation to calculate the chemical potential. Using this expression, 
calculate ln(pv(T, µ)) as a function of T only. This regime is called the intrinsic 
regime. What is the obvious reason for this? What is the coefficiant of the 
linear dependance of ln(pv(T, µ)) with 1/kB T ? 

solution: 
At very high temperatures, a lot of electrons get promoted to the conduction 

band. So quickly the density of holes created in the valence band get dominated 
by this ”intrinsic” behavior, hence the origin of the ”intrinsic regime” of a 
doped semiconductor. If one then neglect Na with respect to pv(µ, T ) in the 
balance equation, one reduces this equation to the exact equation defining a 
pure semiconductor: 
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nc(µ, T ) = pv(µ, T ) 

And so the chemical potential is given by the equation found in question 2), 
µ(T ) = Ec+Ev + 1 kB T ln( Pv (T ) ). Plugging in the value for the chemical poten­2 2 Nc(T ) 

tial in the expression for pv(µ, T ), we find: 

ln(pv(µ, T )) = 1 ln(Pv(T )Nc(T )) − Ec−Ev ( 1 )2 2 kB T 

The coefficiant of the linear dependance in 1/kB T is − Eg .2 

10) Draw a schematic diagram of ln(pv(T, µ)) as a function of 1/kB T . 

solution: 
Everything that has been said about the different conduction regimes has 

been summarized on figure 1. 

Figure 1: The three different conduction regimes for a doped semiconductor. 
The low temperature regime (freeze-out regime) shows a straight line of slope 
− �a . The saturation regime dominated by the impurities is a horizontal line 2 
and the high temperature regime (intrinsic regime) shows a staight line of slope 
− Eg . This slope is much more important than the freeze-out slope because 2 
impurities binding energy are small compared to the semiconductor band gap. 

3 The p-n junction 

We discussed the physics of what’s happening when one joins a p-type semi­
conductor and an n-type semiconductor together. After a very small amount 
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of time, a built-in potential is created and a space charge region at the met­
allurgical junction appears. We consider both doped semiconductor to be ho­
mogeneously doped with impurity concentrations Na and Nd. We choose an x 
axis perpendicular to the pn junction and going from the p-side to the n-side. 
At equilibrium, the drift currents and the diffusion currents balance each other. 
The drift currents are given by the standard Ohm’s law: 

Jn
drift (x) = nc(T, µ)eµnE and Jp

drift (x) = pv(T, µ)eµpE drift currents for 
electrons and holes 

In those expressions, µn and µp are the electron and hole mobilities. The diffu­
sion currents are given by Fick’s law: 

Jdiff (x) = −(−e)Dn 
dnc(T,µ) = eDn 

dnc(T,µ) andn dx dx 

Jdiff = −(+e)Dp 
dpv (T,µ) = −eDp 

dpv (T,µ) 
p dx dx 

Remember that electrons have a negative charge −e and the holes have a positive 
charge +e, hence the above equations. Because of the space charge region, an 
electrical potential φ(x) is created, and its effect is to shift rigidly the band 
structure at point x by an amount −eφ(x) which represents the amount of 
supplemental potential energy of an electron due to the electric field. We will 
study the behavior of the pn junction at room temperature which is about 300K. 

3.1 calculation of the built-in potential 

11) With what has been done in the previous part of the homework, con­
clude about the behavior regime of the p-side and the n-side at 300K. What is 
the expression for the chemical potential on the p-side, µL(T ), previous to the 
formation of the junction? Identically one can show that the chemical potential 
on the n-side previous to the formation of the junction is: 

NdµR(T ) = Ec + kB T ln( Nc(T ) ) 

where Ec is the bottom of the conduction band, Nd is the concentration of 
donor impurities on the n-side and Nc(T ) is the effective density of states in the 
conduction band. 

solution: 
At 300K most of the impurities in both semiconductors are ionized, so each 

of them is in its saturation regime. The chemical potential in this regime has 
been calculated in question 8) for the p-doped semiconductor: 

µ(T ) = Ev + kB T ln( Pv 

N
(

a 

T ) ) for a p-doped semiconductor in the saturation 
regime 

The exact symmetric result for the n-doped semiconductor is: 

Ndµ(T ) = Ec + kB T ln( Nc(T ) ) for an n-doped semiconductor in the saturation 
regime 
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12) By definition the built-in potential is given by eφb = Ev(+∞)−Ev(−∞) = 
Ec(+∞) − Ec(−∞). By observing that the distance between the chemical po­
tential and the top of the valence band must not change on both the p-side and 
the n-side in the respective limits x → −∞ and +∞ even after the junction has 
been created, prove that the built-in potential is given by: 

eφb = µR(T ) − µL(T ) 

and calculate explicitly this built-in potential as a function of Eg, T, Na, Nd, 
Nc(T ) and Pv(T ). What is the built-in potential at 0K? What is the built-
in potential for GaAs at 0K and 300K with uniform doping of Na = Nd = 
1022 m−3? The band gap for GaAs at 300K is 1.43 eV. 

solution: 
Before we assemble the two semiconductors together to create a junction, 

the chemical potential and the top of the valence band in the p-doped semi­
conductor have some definite values: µL(T ) and Ev

L . Similarly, in the n-doped 
semiconductor we have some definite values µR(T ) and Ev

R . After we join the 
two semiconductors, the chemical potential has become µ everywhere. Moreover 
EL and ER have been shifted by the electrical potential by some values eφLv v 
and eφR. But deep on the p-side and deep on the n-side, the distance between 
µ and Ev must not have changed because we are far from the junction. So we 
have: 

µL(T ) − EL = µ − (EL − eφb) and µR(T ) − ER = µ − (ER − eφR)v v	 v v 

The terms Ev
L and Ev

R disappear on both sides of the above equations and 
taking the difference between the two above equations leads us to: 

µR(T ) − µL(T ) = (µ + eφR) − (µ + eφL) = e(φR − φL) = eφb 

Now using the expressions for the chemical potentials obtained in question 
11), we find: 

eφb = Ec − Ev + kB T ln( NaNd )Nc(T )Pv (T ) 

Remark: here a little subtlety appears. Indeed in the above equation Ec 

is the bottom of the conduction band of the host material which is n-doped 
whereas Ev is the top of the valence band of the host material which is p-
doped. So only in the case where the two host materials are identical, we can 
say that Ec − Ev is the band gap. 

At 0K, the built-in potential is just the band gap. For GaAs, we have 
eφb(0K) = 1.43 eV and eφb(300K) = 1.16 eV. I used the effective masses given 
earlier to calculate the built-in potential at 300K. 

3.2	 electrical potential profile and size of the depletion 
region 

Let us now focus on the depletion region. We would like to calculate the size 
of the depletion region as a function of some fundamental physical constants of 
the pn junction. For this we will consider that the charge density ρ(x) looks 
like the following: 
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ρ(x) = −eNa for −dp < x < 0 and ρ(x) = +eNd for 0 < x < dn 

where dp and dn denote the size of the depletion region on respectively the p-
side and the n-side. The way to find the electrical potential is to use the Poisson 
equation with the appropriate boundary conditions. The Poisson equation in 
the international system of units is: 

d2φ(x) ρ(x) 
dx2 = − � 

where � is the dielectric constant of the medium (here some GaAs with � = 
13.2 ∗ �0) and �0 is the vacuum dielectric permitivity �0 = 8.854 ∗ 10−12F.m−1 . 

13) Find the boundary conditions that φ(x) must satisfy and solve the Pois­
son equation explicitly using the given shape for the charge density ρ(x). 

solution: 
At minus infinity, the electrical potential must saturate to a given value 

such that the electric field vanishes. Since potentials are always given up to a 
constant, let us take φ(−∞) = φ(x < −dp) = 0. At plus infinity the same kind 
of analysis applies. But since we have a finite potential difference between right 
and left, we will take φ(+∞) = φ(x > dn) = φb. Moreover because the charge 
density jumps at x = −dp and x = dn are finite, the first derivative must be 
continuous at those points. Since the derivative is zero for both x < −dp and 

x > dn, we then have dφ(x) 
x=−dp = 0 and dφ(x) 

x=dn = 0. dx | dx |
The Poisson equation is d2φ(x) ρ(x) , and so the solution is very easy to dx2 = − � 

find given the charge density. On the left hand side of the junction we have: 

φ(x) = − eNa x2 + αx + β with −dp < x < 02� 

dφ(x)and with φ(−dp) = 0 and dx |x=−dp = 0 we can extract α and β and end up 
with: 

φ(x) = eNa (x + dp)2 with −dp < x < 02� 

In a similar way we can obtain the potential on the right-hand side and find: 

φ(x) = φb − eNd (x − dn)2 with 0 < x < dn2� 

14) Using the continuity of the electrical pontential and its first derivative 
(the electric field) at x = 0, find two equations that will link the variables Na, 
Nd, �, dp, dn, e and φb together. From those expressions, give the values for dn, 
dp and w = dp + dn as functions of Nd, Na, e, � and φb only. Find the numerical 
values for each of those length in the case of a GaAs pn junction with φb = 1V , 
Na = Nd = 1022 m−3 . 

solution: 
We will use the continuity of the electrical potential and of its first derivative 

at the interface between the two semiconductors to extract two new relation­
ships. The continuity of the electrical potential gives us: 

eφb = 2� (Nadp 
2 + Nddn

2 ) 
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The continuity of the electric field gives us: 

eNa = eNddp dn 

This second relation has a clear physical interpretation. It is just a charge 
balance equation stating that the total amount of negative charges on the left 
must be equal to the total amount of positive charges on the right. Using the 
above two equations, we can solve for dp and dn as functions of φb, Na, Nd, � 
and e: 

dp = Nd 1 2�φb and dn = Na 1 2�φb 
Na Na+Nd e Nd Na+Nd e 

The total size of the depletion layer is just given by w = dp + dn, so we find: 

Na +Nd 2�φbw = NaNd e 

For a GaAs junction with φb = 1 V and Na = Nd = 1022 m−3, we find dp = 
dn = 2700 ˚ A.A and w = 5400 ˚

3.3 pn junction under bias and I(V) curve 

When one apply a potential difference V between the two ends of a pn junction 
one can easily realize that forward bias and reverse bias are not symmetrical. 
Let us investigate why. For this we will use two relationships linking the carrier 
densities at different points x that may easily be obtained from what we have 
seen before. Those relations are the following: 

kB TFor electrons, nc(T, x1) = nc(T, x2)e e( φ(x1)−φ(x2) 
) 

and 

kB TFor holes, pv (T, x1) = pv(T, x2)e
−e( φ(x1)−φ(x2) 

) 

15) What is the relationship between the electron density at x = −dp and 
x = dn when no bias exists? Same question for the hole density. 

solution: 
Given that pv(T, x = −dp) = Na (the p-doped semiconductor is in its sat­

uration regime to the left of the depletion region), nc(T, x = dn) = Nd (the 
n-doped semiconductor is in its saturation regime to the right of the depletion 
region) and φ(dn) − φ(−dp) = φb, it is easy to conclude from the formulas given 
above that: 

φb φb 
kBT kBTnc(T, x = −dp) = Nde

−e and pv(T, x = dn) = Nae
−e 

16) When one applies a bias V, it tends to favor the flowing of charges under 
forward bias and unfavor it under reverse bias. So we will take V to be 
positive when it is a forward bias and negative when it is a reverse bias. With 
this convention how will the built-in potential φb change when an arbitrary bias 
V is applied? Explain what happens to the depletion region size when a forward 
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� � 

� � � � 

and reverse bias is applied to the junction and conclude about the asymmetry 
between forward and reverse bias. 

solution: 
When one applies a forward bias, the built-in potential is reduced by an 

amount V. On the contrary, applying a reverse bias means raising the potential 
barrier between the two ends of the depletion region. So in general, when one 
applies a bias V (positive for forward bias and negative for reverse bias) then 
the built-in potential becomes φb − V . If we look at the expressions for the 
depletion region lengths, we find: 

dp(V ) = Nd 1 2�(φb−V ) and dn(V ) = Na 1 2�(φb−V ) 
Na Na+Nd e Nd Na +Nd e 

So the size of the depletion region is reduced when one applies a forward bias 
and increased when one applies a reverse bias. As a consequence, the flow of 
charges is eased when a forward bias is applied and almost prevented when a 
reverse bias is applied. 

17) Using the above results, show that the change in electron density Δnc 

at x = −dp between a configuration where no bias is applied and a configuration 
where a bias V is applied can be written as: 

eV 

Δnc = nc 
0(e kB T − 1) 

Same question for the change in hole density Δpv at x = dn. 

solution: 
Using the results of questions 15) and 16), we find that: 

φb−V φb φb eV 
kB TΔnc = Nde

−e kB T − Nde
−e kB T = (Nde

−e kB T ) e − 1 

φb 
kB TSo we arrive at the required formula if we put nc 

0 = Nde
−e . The same 

calculation for pv gives us: 
φb eV eV 

Δpv = (Nae
−e kB T ) e kB T − 1 = pv 

0 e kB T − 1 

Concluding remark: This change in the concentration of minority carri­
ers on both side of the pn junction is responsible for a minority carrier diffusion 
current that behaves like: 

eV 
kB TJ(V ) = Js(e − 1) 

This current is responsible for the I(V ) response curve of a pn junction. 
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