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Last time

1. Vector space (expectation values measure the 
projection on different eigenvectors)

2. Eigenvalues and eigenstates as a linear algebra 
problem

3. Variational principle
4. Its application to a H atom (atomic units)
5. Hamiltonian for a molecular system; bonding and 

antibonding states
6. Potential energy surface of a molecule 
7. Vibrations at equilibrium; quantum harmonic 

oscillator 



Study

• Chapter 2 of Singleton textbook – “Band 
theory and electronic properties of solids”
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Dynamics, Lagrangian style

• First construct L=T-V
• Then, the equations of motion are given by

• Why ? We can use generalized 
coordinates. Also, we only need to think at 
the two scalar functions T and V
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Newton’s second law, too

• 1-d, 1 particle: T=1/2 mv2, V=V(x)
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Hamiltonian

• We could use it to derive Hamiltonian 
dynamics (twice the number of 
differential equations, but all first order). 
We introduce a  Legendre 
transformation
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1-dimensional monoatomic
chain
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• Unique solutions for k in the first BZ

• Phase velocity and group velocity

Properties
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• Standing waves

• Long wavelength limit

Properties
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Ring geometry
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1-dimensional diatomic chain
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Please replace with the credit line: Image removed due to copyright restrictions. 
Please see Fig. 22.10 in Ashcroft, Neil W., and N. David Mermin. Solid State Physics. Belmont, CA: Brooks/Cole, 1976. ISBN: 9780030839931.



Translational Symmetry
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Bravais Lattices

• Infinite array of points with an arrangement and orientation 
that appears exactly the same regardless of the point from 
which the array is viewed.

• 14 Bravais lattices exist in 3 dimensions (1848)
• M. L. Frankenheimer in 1842 thought they were 15. So, so 

naïve…
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Figure by MIT OpenCourseWare.
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Symmetry

• Symmetry operations: actions that 
transform an object into a new but 
undistinguishable configuration

• Symmetry elements: geometric entities 
(axes, planes, points…) around which we 
carry out the symmetry operations 
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Symmetry elements and their corresponding operations

Symmetry elements Symmetry operations

E
Cn

σ

i

Sn

EIdentity

n-Fold rotation axis

n-Fold rotation-reflection axis

Mirror plane

Inversion center

Cn, Cn2                                                                                                              ,....., Cnn

σ

i

Sn

leave molecule unchanged

rotate about axis by 360o /n 1, 2, .... , n times (indicated by superscript)

reflect through the mirror plane

(x, y, z)     (-x, -y, -z)

rotate about axis by 360o /n, and reflect through a plane perpendicular to axis.

Figure by MIT OpenCourseWare.



Group Therapy…
A group G is a finite or infinite set of elements A, B, C, 
D…together with an operation “☼” that satisfy the four 
properties of:

1. Closure: If A and B are two elements in G, then A☼B is also in 
G.

2. Associativity: For all elements in G, (A☼B) ☼C==A☼ (B☼C).

3. Identity: There is an identity element I such that I☼A=A☼I=A for 
every element A in G.

4. Inverse: There is an inverse or reciprocal of each element. 
Therefore, the set must contain an element B=inv(A) such 
that A☼inv(A)=inv(A) ☼A=I for each element of G.



Examples

• Integer numbers, and addition

• Integer numbers, and multiplication

• Real numbers, and multiplication

• Rotations around an axis by 360/n 



Figure by MIT OpenCourseWare.
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The 4 symmetry operations of H2O 
form a group (called C2v)

1. Closure: A☼B is also in G.
2. Associativity: (A☼B) ☼C=A☼ (B☼C)
3. Identity: I☼A=A☼I
4. Inverse: A☼inv(A)=inv(A) ☼A=I
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Figure by MIT OpenCourseWare.



Ten crystallographic point groups in 2d
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(see text).

Figure by MIT OpenCourseWare.



32 crystallographic oint groups in 3d
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Figure by MIT OpenCourseWare.
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The Crystallographic Point Groups and the Lattice Types.



Crystal Structure = Lattice + Basis

Crystal Structure = Lattice + basis

Lattice

Basis Figure by MIT OpenCourseWare.



Primitive unit cell and conventional unit cell

Figure by MIT OpenCourseWare.



Periodic boundary conditions
for the ions (i.e. the ext. potential)

• Unit cell = Bravais
lattice = space filler

• Atoms in the unit cell + 
infinite periodic replicas



Reciprocal lattice (I)
• Let’s start with a Bravais lattice, defined 

in terms of its primitive lattice vectors…
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Reciprocal lattice (II)
• …and then let’s take a plane wave

( ) exp[ ( )]r A i G rΨ = ⋅



Reciprocal lattice (III)
• What are the wavevectors for which our 

plane wave has the same amplitude at 
all lattice points ?
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Reciprocal lattice (IV)
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Examples of reciprocal lattices

Direct lattice Reciprocal lattice

Simple cubic Simple cubic

FCC BCC

BCC FCC

Orthorhombic Orthorhombic
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