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ONE BLOCH AT A
TIME

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)



Last time

Vector space (expectation values measure the
projection on different eigenvectors)

Eigenvalues and eigenstates as a linear algebra
problem

Variational principle
Its application to a H atom (atomic units)

Hamiltonian for a molecular system; bonding and
antibonding states

Potential energy surface of a molecule

Vibrations at equilibrium; quantum harmonic
oscillator
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Study

o Chapter 2 of Singleton textbook — “Band
theory and electronic properties of solids”
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Dynamics, Lagrangian style

e First construct L=T-V
e Then, the equations of motion are given by

d(oL) oL
dt | oq,

J
 Why ? We can use generalized
coordinates. Also, we only need to think at
the two scalar functions T and V

8 q j (the dot is a time derivative)
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Newton’s second law, too

e 1-d, 1 particle: T=1/2 mv?, V=V(X)

d| oL _a_L_O
dt{ o9, ) aq;

4 1 A
d a(zm’(zj oV d oV
, + =0 = —(mx) -
dt OX OX dt
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Hamiltonian

We could use it to derive Hamiltonian
dynamics (twice the number of

differential equations, but all first order).
We Iintroduce a Legendre

transformation
oL . .
pi ZE H(qa pat):ZQi pi_L(qaqat)
g-H M
! op, ! 00
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1-dimensional monoatomic
chain
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Properties

. lE]Jnique solutions for k in the first BZ
S

U

S+1

e Phase velocity and group velocity
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Properties

e Standing waves

e Long wavelength limit
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Ring geometry
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1-dimensional diatomic chain

—b: 44—

® o o ¢ o o &
| I B S B R S E—

a sa (S+l)a (S+2)a

III. Equations of motion

ledn )
LF
M 5 = K (s, — 10y, J+ Gl 1, )
d,
{ﬁi, :K(H], _Hﬂs)-I_GI[Hl,Hl Iy :l
IV, Solutions
HL; _ Hlﬁ?mﬂﬁ?'_ém, Hg; — Hzﬁ?mﬂf_im
V. Dispasion relations

(Mo - (K +G))u+ (K+Ge™ )y =0
(K +Ge™ u+ (Mo* - (K +G))u, =0



The homogenous linear equations have a solution only if the determinant of the
coefficients is zero:

(Ma*-(K+G))  (K+Ge™)

=0
(K+Ge™)  (Mo'-(K+G))
with solutions:
o’ = K \/K2+GZ+2KGcoska
M M
“_1 _K+Ge™
‘K +Ge™
for each k there are two solutions Wthh are called the two branches of the dispersion

CUrvcs.

Please replace with the credit line: Image removed due to copyright restrictions.
Please see Fig. 22.10 in Ashcroft, Neil W., and N. David Mermin. Solid State Physics. Belmont, CA: Brooks/Cole, 1976. ISBN: 9780030839931.
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Translational Symmetry

Figure by MIT OpenCourseWare.



Bravais Lattices

 Infinite array of points with an arrangement and orientation
that appears exactly the same regardless of the point from
which the array is viewed.

R=14 +ma, +nd, 1m and n integers

d,, d, and a, primitive lattice vectors

« 14 Bravais lattices exist in 3 dimensions (1848)

M. L. Frankenheimer in 1842 thought they were 15. So, so
naive...



7 Crystal Classes

. Bravais lattices

4 Lattice Types
— — —————— —
Bravais Parameters Simple Volume Base Face
Lattice P) Centered (I) | Centered (C) | Centered (F)
a,Fa+a
Triclini 1 2 3
riclinic Olpy # Oy # 0Ly,
a, Faa
Monoclinic O3 = 03y = 90"
oy, #90°
. a,Fata
Orthorhombic Oy = Oy = 03 = 90° ﬂ: @
a,=aa
Tetragonal 0Lyy = Olyy = Oly; = 90"
Trigonal Oy = O3 = 04y < 120 @
. 4 TdTa
Crlete 0Ly = Oly3 = 03y = 90° @ @
a,=aa
Hexagonal oy, = 120°
Figure by MIT OpenCourseWare.




Symmetry

o Symmetry operations: actions that
transform an object into a new but
undistinguishable configuration

e Symmetry elements. geometric entities
(axes, planes, points...) around which we
carry out the symmetry operations



Figure 17.1b
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Symmetry elements and their corresponding operations

Symmetry elements

Symmetry operations

E  Identity E leave molecule unchanged

Cn  n-Fold rotation axis én’ éx% rotate about axis by 360° /n 1, 2, .... , n times (indicated by superscript)
o  Mirror plane o) reflect through the mirror plane

i Inversion center ; X, Y, 2)—(=x, -y, -z)

Sn  n-Fold rotation-reflection axis §n

rotate about axis by 360° /n, and reflect through a plane perpendicular to axis.

Figure by MIT OpenCourseWare.




Group Therapy...

A group G is a finite or infinite set of elements A, B, C,
D...together with an operation “3.¥” that satisfy the four
properties of:

. Closure: If A and B are two elements in G, then AXfB is also in
G.

. Associativity: For all elements in G, (AXfB) 3fC==A3t (B¥tC).

. Identity: There is an identity element | such that IXfA=A3XI=A for
every element A in G.

. Inverse: There is an inverse or reciprocal of each element.
Therefore, the set must contain an element B=inv(A) such
that Axtinv(A)=inv(A) XtA=I for each element of G.



Examples
Integer numbers, and addition
Integer numbers, and multiplication
Real numbers, and multiplication

Rotations around an axis by 360/n



A%

{72 axis

o' mirror plane

/ T
Gy MIITor (::)

plane

Figure by MIT OpenCourseWare.



Symmetries
of H,O

y y
.x .x

C, axis
(xyz) — (xy?2) (xyz) —>(x-y2)
y y
(xyz) —>(xy2) (xyz) —(x-y2)

Figures by MIT OpenCourseWare.




Symmetries
of H,O

C, axis

(xyz) — (xy2) (xyz)—>(x-y2)

y y

(xyz) —>(xy2) (xyz) —>(x-y2)

Figure by MIT OpenCourseWare.




The 4 symmetry operations of H,O
form a group (called C,,)

i

Closure: AXIB is also in G.
Associativity: (AfB) IXC=ALt (B3XC)
I[dentity: ZXA=ALX]

Inverse: Atinv(A)=inv(A) IXA=I

C, 8V (4]
E oy o©
o ﬁ C,
o éz E

Figure by MIT OpenCourseWare.




Ten crystallographic point groups in 2d

1 2 3 4 6

° ¢ 0 C, A ¢, O ¢, QO ¢,
m 2mm 3m
CS C2v C3v
4mm 6mm
C4\/ C6v

The ten crystallographic plan point groups. Upper symbol,
international notation; lower symbol, Schoenflies notation
(see text).

Figure by MIT OpenCourseWare.



32 crystallographic point groups in 3d

The Crystallographic Point Groups and the Lattice Types.
Crystal System  Schoenflies Hermann-Mauguin Order of the  Laue Group
Symbol Symbol group
Triclinic Ci 1 1 1
G 1 2 (1) Each component in the name refers to a different direction. For example, the
Monoclinic G 2 2 2/m symbol for the orthorhombic group, 222, refers to the symmetry around the x,
Cs m 2 1, and z axes, respectively.
Con 2/m 4 (2) The position of the symbol m indicates the direction perpendicular to the
Orthorhombic D, 222 4 mmm mirror plane.
Cov mm?2 4 (3) Fractional symbols mean that the axes of the operators in the numerator and
Don e 8 denominator are parallel. For example, 2/m means that there is a mirror plane
syt 54 4 4 4/m perpendicular to a rotation diad.
8411 i/m g (4) For the orthorhombic system, the three symbols refer to the three mutually
D, 422 8 Afin 7 perpendicular x. y, and = axes, in that order.
Cyy 4dmm 8 (5) All tetragonal groups have a 4 or 4 rotation axis in the z-direction and this is
Doy 42m 8 listed first. The second component refers to the symmetry around the mutually
Dyn 4/m mm 16 _ perpendicular x and y axes and the third component refers to the directions in
Trigonal Gs 3 3 3 the x—y plane that bisect the x and y axes.
Csi 3 6 - (6) In the trigonal systems (which always have a 3 or 3 axis first) and hexagonal
IC); 331 2 3m svstems (which always ha‘vc ab or‘G axis first), the second symbol dv..esc:'ibes the
Dy 3m 12 n}'111mc11:}* around the eq_uwaland1rlccli0ns (either 120° or 60° apart) in the plane
Hexagonal Ce 6 6 6/m pﬁcrpend@ular to the 3, 3‘. 6. or 6 axis. ‘ o .
Cy g 6 (7) A third component in the hc_‘)fagmml system refers to directions that bisect
Cyn 6/m 12 the angles between the axes specified by the second symbol.
Dg 622 12 6/m mm (8) If there is a 3 in the second position, it is a cubic point group. The 3 refers to
Ceyv 6mm 12 rotation triads along the four body diagonals of the cube. The first symbol refers
D3y, 6m2 12 to the cube axis and the third to the face diagonals.
Degn 6/m mm 24
T 23 12 m3
Th m3 24
o) 432 24 m3m
Ty 43m 24
On m3m 48
Figure by MIT OpenCourseWare.




Crystal Structure = Lattice + Basis

(OF©) oe (O ) (OX©) (ON©)
o o

oo oo oo oo e® oo
[e]
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o0 oo @ ‘
oo o0

Crystal Structure = Lattice + basis

o

Lattice

B aslis Figure by MIT OpenCourseWare.



Primitive unit cell and conventional unit cell

Do
/|
-

\

Figure by MIT OpenCourseWare.



Periodic boundary conditions
for the 1ons (i.e. the ext. potential)

e Unit cell = Bravais
lattice = space filler

e Atoms in the unit cell +
Infinite periodic replicas




Reciprocal lattice (1)

e Let’s start with a Bravais lattice, defined
In terms of its primitive lattice vectors...

T R =14 +ma, +na,
|, m, n integer numbers

R=(1,m,n)




Reciprocal lattice (Il)

s take a plane wave

..and then let’

G

P () = Aexpli

)]

T

(




Reciprocal lattice (lll)

 \What are the wavevectors for which our
plane wave has the same amplitude at
all lattice points ?

exp
exp

exp

(G -T)]=exp[i(G-(F +R))]
i(G-R)]=1

i(G-(1a +ma, +n&,))] =1

a, , d, and &, define the

primitive unit cell

G -é'j = 272&‘”-

—

G, , G, and G, define the

reciprocal space Brillouin Zone



Reciprocal lattice (1V)

—

G,-a; =270; ninteger is satistied by

G =hb, +ib, + jb, with h,i, j integers,

512 ><<’?13 3'3 xél

provided b, - 2# b, = 27 —

a3y xa; )

G =(h,i, j) are the reciprocal-lattice vectors



Examples of reciprocal lattices

Direct lattice

Reciprocal lattice

Simple cubic

Simple cubic

FCC BCC
BCC FCC
Orthorhombic Orthorhombic
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