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Last time: Wave mechanics 

11.	 Time-dependent Schrödinger equation Time dependent Schrödinger equation 

2.	 Separation of variables – stationary Schrödinger 
equation 

3.	 Wavefunctions and what to expect from them 

4.	 Free particle and particle in a 1-d, 2-d, 3-d box 

5.	 Scanning tunnelling microscope 

6.	 (Applets) 
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3.23 Fall 2007 – Lecture 3 
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CURIOSITY KILLED THE CAT 

Courtesy flickr user mjk4219.

http://www.flickr.com/people/mjk4219/?search=mjk4219


•

Good news 

• Study material: Prof Fink QM notesStudy material: Prof Fink QM notes

(uploaded on Stellar)
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First postulate 

• All information of an ensemble of identical physical 
systtems iis conttaiined in th  the ket Ψd i  k t  Ψ (  ll  (usually a 
wavefunction Ψ(x,y,z,t), which is complex, 
continuous, finite, and single-valued, square­

2 rdr  is finite )integrable (  i.e. ∫ Ψ 

• ThThe kket can also be a geometriical vector ((e.g. spiin));l b  l  
in truth, wavefunctions are objects that satisfy 
vector algebra, and the space of wavefuncitons is a 
Hilbert space (instead of being 3-d, it’s infinite-d) 
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•

Normalization, scalar products
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Second Postulate 

•	 For every physical observable there is aFor every physical observable there is a 
corresponding Hermitian operator 
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•

From classical mechanics to operators 

• Total energy is T+V  (Hamiltonian is kinetic + 
potential) 

r 
• classical momentum         p → r 

→  gradient operator − ih∇ 
r 

• classical position         r → 
→  multiplicative operator r̂ 
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Operators and operator algebra 

• Examples: derivative Examples: derivative, multiplicativemultiplicative 
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• =

Linear and Hermitian 

• AÂ[[αα ϕϕ ++ ββ ψψ ]]= ααAÂ ϕϕ ++ ββAÂ ψψ 

• ϕ Âψ = Â ϕ ψ 
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Examples: (d/dx) and i(d/dx) 
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Hermitian Operators 
1.	 The eigenvalues of a Hermitian operator are real 

2.	 Two eigenfunctions corresponding to different eigenvalues 
are orthogonal 

3.	 The set of eigenfunctions of a Hermitian operator is 
complete 

4.	 Commuting Hermitian operators have a set of common 
eigenfunctions 
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The set of eigenfunctions of a Hermitian 
operator is complete 
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•

The set of eigenfunctions of a Hermitian 

operator is complete
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Product of operators, and 
commutators 

• AÂBB̂ 

• [Â, B̂ ] 

⎡ d ⎤ • ⎢⎣ 
x, 

dx ⎥⎦ 
= −1 

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007) 

7 

Figure by MIT OpenCourseWare.



•

•

Third Postulate 

•	 In any single measurement of a physicalIn any single measurement of a physical 
quantity that corresponds to the operator 
A, the only values that will be measured 
are the eigenvalues of that operator. 
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Fourth Postulate 

•	 If a series of measurements is made ofIf a series of measurements is made of 
the dynamical variable A on an ensemble 
described by Ψ, the average 

ΨΨ
Ψ Â Ψ

(“expectation”) value is A = 

i.e. the probabiliy of obtaining an 

eigenvalue an is P an
( ) = 

2 
nϕ Ψ 
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•

Dirac Notation 

• Eigenvalue equation:Eigenvalue equation: 

(
 ij )
Â ψ ψai ψ i ψ δi =
 =
⇒
i j 

•• Expectation values: Expectation values: 

h2 ⎤ 
⎥
⎦
ψ 
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Commuting Hermitian operators have a set of 
common eigenfunctions 

⎡

HH ˆˆ ψψψ r
 V (r 

r) r rdr * 2ψ
 ψ
∫
 Ei−
 ∇
 +
(r ) (r )=
 =
 =
⎢
⎣


i i i i i i2m 
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•

Quantum double-slit
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Fifth postulate 

• If the measurement of the physicalIf the measurement of the physical 
quantity A gives the result an , the 
wavefunction of the system immediately 
after the measurement is the eigenvector 
ϕn 
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Image from Wikimedia Commons, http://commons.wikimedia.org

http://commons.wikimedia.org


Position and probability
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Quantum double-slit 
Image removed due to copyright restrictions. 

Please see any experimental 
verification of the double-slit experiment, such as 

http://commons.wikimedia.org/wiki/Image:Doubleslitexperiment_results_Tanamura_1.gif 
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Diagram showing the probability densities of the 
first 3 energy states in a 1D quantum well of width L.



Graphs of the probability density for positions of a particle in a 
one-dimensional hard box according to classical mechanics removed for 
copyright reasons.  See Mortimer, R. G. Physical Chemistry. 2nd ed.  
San Diego, CA: Elsevier, 2000, page 555, Figure 15.3.

Image of a double-slit experiment simulation removed due to 
copyright restrictions. Please see "Double Slit Experiment."
in Visual Quantum Mechanics.

http://commons.wikimedia.org/wiki/Image:Doubleslitexperiment_results_Tanamura_1.gif
http://www.kfunigraz.ac.at/imawww/vqm/pages/samples/104_18a.html


•

•

•

Deterministic vs. stochastic 

•	 Classical macroscopic objects: we have well-Classical, macroscopic objects: we have well 
defined values for all dynamical variables at every 
instant (position, momentum, kinetic energy…) 

•	 Quantum objects: we have well-defined 
probabilities of measuring a certain value for a probabilities of measuring a certain value for a 
dynamical variable, when a large number of 
identical, independent, identically prepared 
physical systems are subject to a measurement. 
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Top Three List 

•	 Albert Einstein: “Gott wurfelt nicht!Gott wurfelt nicht!” [God does Albert Einstein: [God does 
not play dice!] 

•	 Werner Heisenberg “I myself . . . only came to 
believe in the uncertainty relations after many 
pangs of conscience. . .” 

•	 Erwin Schrödinger: “Had I known that we were Had I known that we wereErwin Schrödinger: 
not going to get rid of this damned quantum 
jumping, I never would have involved myself in 
this business!” 
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