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3.23 midterm exam. Solutions 

October 31, 2007 

Question 1 [20 points] 

Define and explain the following concepts, and for each of them explain their 
relevance with an example. 

a) Commuting operators: 
One says that the set ˆ B, ... A, ˆ form a set of commuting operators, when 

we have the following property: ÂB̂ = B̂Â etc... When those operators are 
hermitian, we have a special result that says that we can find a basis consitituted 
by common eigenvectors of those commuting hermitian operators. This property 
has been used in class to classify the eigenfunctions for the hydrogen atom. 

ˆ L2 ˆIn this case, we have that H, ˆ , Lz form a set of commuting hermitian 
operators. 

b) Acoustic and optical phonons: 
Phonons are the elementary vibrational excitations of the crystal in a peri­

odic solid. We can always distinguish between two types of excitations. The 
ones for which the energy (or the frequency) of the phonon goes to zero when the 
wavevector goes to zero (or the wavelength to infinity), and the ones for which 
even when the wavevector goes to zero the energy of the phonon is finite. The 
former ones are called acoustic phonons when the latter ones are called optical 
phonons. Another feature for acoustic phonons is the fact that the energy disper­
sion ω(�k) goes to zero linearly with the wavevector ω(�k) ≈ (cxkx + cyky + czkz ). 
The coefficiants in this asymptotic behavior are nothing but the speed of sound 
in x, y and z directions. Phonons are key contributors to the heat capacity of 
solids. 

c) Time-dependant Schrödinger equation: 
The TDSE is the fundamental equation of quantum mechanics (in the non­

relativistic limit) from which someone can, in principle, find all the informations 
concerning a system. It is the equivalent of Newton’s second law in classical 
dynamics. The TDSE has been used in homework to find the time evolution of 
the electron’s spin in an NMR experiment for example. 

d) Hartree’s equations: 
Hartree’s equations were obtained in the first attempt to deal with the com­

plexity of the many-body Schrodinger equation. Those equations can be found 
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by substituting the many-body wavefunction by a product of single-particle 
wavefunctions in the variational principle. The physics hidden behind those 
equations is the following: one wants to describe the assembly of interacting 
electrons as a collection of independant particles interacting with the average 
electric field generated by the other particles. This desciption can be substan­
tially improved by introducing the Pauli exclusion principle and writing the 
many-body wavefunction as a Slater determinant. 

Question 2 [50 points]: One dimensional met­
als and Peierls distortions 

This correction contains more than one needs in order to get the maximum 
grade. But it is intended to make you understand better the material. 

a) The direct space primitive vector is nothing but: �a1 = a�ex. The reciprocal 
space primitive vector �b1 is such that �b1 · �a1 = 2π. So a good choice for �b1 is 
�b1 = 2

a
π �ex. Inside the unit cell we have a single atom so we can choose to put 

this atom at the origin of the coordinates, such that the basis vector be �τ1 = �0. 

b) With the conventions taken in question a), we see that atomic’s equilib­
rium positions are given by: R� = n1�a1 = R�ex. In this question we consider the 
periodic one dimensional crystal in the limit where the lattice spacing is huge. 
In this limit, we can already say the each atom will be surrounded by only one 
valence electron, and moreover the energy of each electron will be simply the 
energy of the φs orbital: �s. If N is the total number of unit cells in the crystal, 
then the correctly normalized Bloch functions will be: 

Φk(x) = √1
N 

� 
R� e

i�kR�φs(x − R) 

In this sum, �k = k1 
�b1 is a vector in the first Brillouin Zone, meaning that k1 

varies between − 1 and 1 (such that its norm varies between − π and π ). We 2 2 a a 
have the following result when one translates this wavefunction by a lattice 
vector R�0: � i�k � � 
Φk(x+R0) = 1

� e
i�kR�φs(x+R0 −R) = e R0 

� e
i�k(R�−R�0 )φs(x−(R−R0))√

N R 
√

N R 

Now if we look at the right hand side of the above equation, we see that the 
mathematical expression is the same as in the case of the Bloch function, except 
that we sum over R� − R�0 instead of just R� . Summing over R� or summing over 
R�−R�0 is just a way of saying which of the unit cell in the crystal is the ”origin”, 
but because of the Born-Von Karman boundary conditions, all the unit cells are 
equivalent and so summing over R� or summing over R�−R�0 is exactly equivalent! 
We then end up with the identity: 

Φk(x + R0) = ei�kR�0 Φk(x) 

which is nothing but Bloch’s theorem. So indeed the ”Bloch sum” satisfies 
Bloch’s theorem. 
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c) In question b), we were considering a one dimensional crystal with a huge 
lattice spacing. In this limit each atom in the solid is surrounded by one valence 
electron and the energy for this electron is just �s. So the band diagram shows 
a straight line of energy �s as in figure 1. 

Figure 1: Band diagram when the atoms are far apart from each other. The 
lattice spacing is huge here such that no overlap between nearest neighbours is 
possible. The band dispersion is flat over the entire first Brillouin Zone. 

The Born-Von Karman boundary conditions imposes a quantization condi­
tion for the wavevector �k. Indeed we see that if Φk(x+Na) = Φk(x), then using 
Bloch’s theorem, we arrive at: ei2πkN = 1 (�k = k�b1). So we see that kN must 
be an integer. But since k must lie inside the first Brillouin Zone (here between 
− 1 and 1 ), we can conclude that: k = n with n varying between −N/2 and 2 2 N 
N/2. What it changes on the band diagram is just the density of points, but 
not the value of the band dispersion. For N = 10, the band diagram becomes 
a regular array of 10 points at energy �s like the one shown on figure 2. For 
N ≈ 1023, the density of points is so big that the plot looks basically like figure 
1. 

d) We now shrink the lattice parameter such that a nearest neighbour overlap 
is possible. In this case, we can write down the hamiltonian as Ĥ = Ĥat + Δ Û . 
We want the Bloch function to be an eigenstate of Ĥ, so we must have ĤΦk(x) = 
Es(k)Φk(x). If one multiplies both sides of this equation by Φ∗ 

k(x) and integrate 
over x, one ends up with: 

Φ∗ (x)ĤΦk(x)dx 
Es(k) = � 

Φ

k

∗ (x)Φk (x)dx
k 

where one integrates over a unit cell. Now if one plugs in the expressions for 
Φk(x) and Ĥ = Ĥat + Δ Û and defines the following integrals: 

(x)Δ ˆ (x)dxUφs
∗ 
s• β = − φ

(x)Δ ˆ (x − R) where R is a nearest neighbour of the atom Uφs

centered at the origin 

∗ • γ = − φs 
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Figure 2: Band diagram when atoms are far apart from each other and with a 
super-periodicity of 10 unit cells for the wavefunction. 

α = φ∗(x)φs(x−R) where R is a nearest neighbour of the atom centered • s

at the origin 

then one ends up with the following expression for Es(k): 

� e 
R NN Es(k) = 

�s−β−γ

ei�k

i

�

�kR�

1+α R 
R NN 

The symbol R NN means that the sum is carried out over all the R�s that are 
nearest neighbours to the atom centered at the origin. If we consider the basis 
{φs(x − R)}R to be orthonormal, then α = 0 and the simplified expression is: 

Es(k) = �s − β − 2γ cos(ka) where k varies between − π and π 
a a 

A plot of the band diagram is given on figure 3. To obtain this plot i took 
β = 0.2�s and γ = 0.2�s. 

e) The general expression for the density of states of a 1D system with an 
energy dispersion Es(k) is the following: 

D(E) = 2 L δ(E − Es(k))dk2π FBZ 

This formula takes into account the spin degeneracy (the factor 2 in front). The 
Dirac delta function will be non-zero only when E = Es(k). We will at this 
point use a well-known formula for the Dirac delta function: 

δ(f(k))dk = k0 |
1

(k=k0)
df (k) 

dk| 

In this formula k0 are all the points in the interval of integration that are 
such that: f(k0) = 0. Using this formula in our problem, we find with f(k) = 
E − Es(k) that: 

D(E) = 2 2
L
π k0 dEs (k

1 
) 

dk|− |(k=k0) 
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Figure 3: Band diagram when the overlap between atoms is reduced to nearest 
neighbour interactions. 

We can easily see that there are only two (symmetric) points in the First Bril­
louin Zone (FBZ) that are such that E = Es(k0). Those points are given by: 
E = �s − β − 2γ cos(k0a). The first derivative of Es(k) is given by 2aγ sin(ka) 
and we also know that | sin(cos(x))| = 

√
1 − x2, such that the final result is: 

D(E) = L � 1 
πγa 1−( E−�s+β )2 

2γ 

A plot of the density of states in reduced units is shown on figure 4. 

Figure 4: Density of states for this 1d crystal in a tight-binding nearest neigh­
bour description. 

Given that we have one valence electron per unit cell so N valence 
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electrons in total, and that a band can accomodate 2N electrons in total, we 
see that the band is half-filled and so this system should be metallic. Given the 
symmetry of the band dispersion with respect to the middle value �s − β, we 
see that the Fermi energy is given by EF = �s − β. 

f) In question e), we calculated the total density of states of the system and 
the Fermi energy. So we can calculate the total energy of the system! Indeed 
since D(E)dE is the total number of quantum states of the system with an 
energy E, then the energy of all those states is just E ∗ D(E)dE. If we sum this 
number over all the occupied interval of energy (from the bottom of the band 
E = � − β − 2γ up to the Fermi energy E = EF = �s − β), we see that we obtain 
the total energy of the system: 

ε = 
� 

�

�

s

s

−
−
β

β 
−2γ ED(E)dE 

Using the expression for D(E) and changing the variable in the integral to 
x = E−

2
�
γ 
s +β , we arrive at: � � 0 � 0 

� 
ε = 2L 2γ xdx + (�s − β) dx 

πa −1 
√

1−x2 −1 
√

1−x2 � 0 xdx
� 0 dx πThe two integrals are classic ones: −1 

√
1−x

= −1 and −1 
√

1−x
= , so the 2 2 2 

final answer is the following: 

ε = L
a (�s − β − π 

4 γ) = N(�s − β − π 
4 γ) 

Remark: In solid state physics, we define the cohesive energy as the energy 
per atom of the solid, or the energy per unit cell of solid. If we use the answer 
above, one sees that the cohesive energy of this one dimensional solid is εcoh = 

γ.�s − β − π 
4 

g) If one uses a unit cell twice as big then the number of atom per unit cell is 
now 2. The new real space primitive vector is 2a�ex and the new reciprocal space 
primitive vector is 2

2
π
a �ex. So the new first Brillouin zone is twice as small as the 

one we used up to now. Using our nearest neighbour tight-binding model, we 
see that the band dispersion obtained in question d) has to be folded back into 
the new first Brillouin Zone. The result of this operation is shown on figure 5. 

h) If we had been using a free electron gas model, the physics of the problem 
wouldn’t have changed. The only difference is the analytic form of the band 

h̄2k2
dispersion Es(k) = 2m that one needs to fold back into the new first Brillouin 
Zone. 

i) If one distorts the structure by displacing one of the atoms in the unit 
cell containing two atoms, then the unit cell containing two atoms becomes 
the smallest possible unit cell that can describe the distorted crystal. The 
description of the system using a two atom unit cell is not redondant any more 
as it was before in the completely symmetric structure of questions a) to h)! 
Using a free electron gas model, the two bands can be obtained by diagonalizing 
the ”master equation”: 

6 



E (k) = 1 E(k) + E(k − g) ± (± 2 E(k) − E(k − g))2 + (2Vg)2 

� � � � 

� � � 

Figure 5: Band diagram obtained by folding the band diagram of question d) 
back into the new first Brillouin Zone. The crystal is described by a unit cell 
twice as big as before. 

⎞⎛⎞⎛ 
. . . . ⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. . 
ck+g 

ck 

ck−g 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

= 0 

h̄2 (k+g)2 

V−g 2m − E Vg · · · 
h2k2¯V − E 

h2
Vg 

¯
−g· · · · · · 2m 

(k−g)2 

· · · V−g 2m − E Vg . . . . .. 

where g = 22
π
a = π

a is the smallest possible G� vector in reciprocal space and Vng 

are the Fourier coefficiants of the perturbing potential. We see on the master 
equation that the dominant component of the perturbing potential is Vg = V−g. 
This equality is true because we can choose the origin of the coordinate system 
such that the perturbing potential is an even (and of course real) function. If 
the potential is really weak we can only keep Vg and forget about all the other 
Vng’s. Far from the Brillouin Zone boundaries, the band dispersion is really 
close to the case of a free electron for which all the Vng are zero. Only close the 
Brillouin Zone boundaries the band structure will look different. Indeed if we 
focus on k ≈ π , we see that the two kinetic energy terms h̄2k2 

and h̄2(k−g)2 

2a 2m 2m 
are almost equal in magnitude. Given that all the other kinetic energy terms 
are quite different in magnitude from those two, we can simplify the ”master 
equation” and only consider a 2 × 2 matrix equation: 

h2k2 

2m − E 
h2 

Vg ck 
¯

¯

= 0 (k−g)2 

V−g 2m − E ck−g 

The eigenvalues corresponding to the two band dispersions around k ≈ π are2a 
then straightforwardly given by: 
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h̄2k2 πwhere E(k) = 2m . So we see that there is a gap at k = 2a , given by the 
difference of the two band dispersions which is just 2|Vg|. We conclude that 
around the Brillouin Zone boundary, two bands that are degenerate in the free 
electron gas model will be separated by a weak perturbing periodic potential. 

j) With what we saw in question i) and in question g), we can see that when 
one goes from a one atom per unit cell description in a perfect solid to a two 
atom per unit cell description in a distorted solid, we have changed the nature of 
the solid. Indeed in the one atom per unit cell, the band was half-filled and the 
solid was a metal. In the case of the distorted solid where the unit cell is twice 
as big, there are two bands, but each of them can accomodate only 2 ∗ N 

2 (=spin 
degeneracy ∗ number of unit cells of length 2a in the solid). So we conclude since 
we have one valence electron per atom, that the first band is completely filled. 
But since the two bands are separated by a gap calculated in question i), we see 
that the system is now an insulator! Moreover we see that because of the gap 
opening at the Brillouin Zone boundary, the energy states around k = 2

π
a (and 

symmetrically around k = − π ) have been lowered in energy. So the conclusion 2a 
is that the total energy of the system by going from a perfect structure to a 
distorted structure has decreased. It is then energetically favorable for a one 
dimensional metallic crystal to distort itself and create a unit cell twice as big 
in order to become an insulator: This spontaneous transition is called a Peierls 
instability and it has been observed experimentally on polymeric chains. 

Question 3 [30 points]: The ammonia maser 

This exercise should be easy to answer because it requires a minimum 
knowledge of quantum mechanics and the quantum mechanical postulates. 

Ask questions if something is not clear. 

a) The |R� and |L� states are a priori not eigenstates of the hamiltonian. 
So off-diagonal matrix elements like L|Ĥ|R and R|Ĥ|L are not zero in 

general. As a consequence the hamiltonian matrix expressed in the {|R� , |L�}
basis is not diagonal in general. Another way to see this is to realize that since 
we have some tunneling probability to go from state |R� to state |L� (that is 
why the molecule spends some time in the |R� state and some time in the |L�
state), those states cannot be eigenstates of the hamiltonian. 

b) In agreement with the result of question a), the hamiltonian matrix ex­
pressed in the {|R� , |L�} basis is: ⎛ � � � � ⎞ ⎝ � 

L|Ĥ|L � � 
L|Ĥ|R � ⎠ = 

� 
E0 V 

� 

R|Ĥ|L R|Ĥ|R V E0 

Since the basis {|R� , |L�} is orthonormal (it is stated in the text!), the eigen­
values are easily obtained by setting the determinant of the following matrix to 
zero: 

E0 − E V 
V E0 − E 
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which gives us: 

¯

E± = E0 ± V 

Let us calculate the eigenvector corresponding to the eigenvalue E− = E0 − V . 
To do this we go back to the Schrodinger equation in matrix form and inject 
the expression for the eigenvalue E. � �� � 

VE0 − E c−1 = 0 
V E0 − E c−2 

Simplifying the matrix system gives us: � �� � 
V V c−1 = 0 
V V c−2 

and we find that c−2 1 . So the eigenvector looks like: |v 1 (|L� − |R�)= −c− −� = c−

(Do not forget that the hamiltonian matrix and the eigenvectors are expressed 
in the {|R� , |L�} basis!). In order to find c1

−, we impose the following nor­
malization condition: �v−|v−� = 1. the expression for �v−| is nothing but 

= (c−)∗(�L ). So when one calculates �v −� and uses the orthonor­�v−| 1 |− �R| −|v
mality of the {|R� , |L�} basis, one finds the following result for |c−|: 

1 
2|c−| = 

So a perfectly suitable choice for |v−� is |v−� = √1
2 
(|L� − |R�). If one does the 

same calculation for the second eigenvector, one finds: 

|v+� = √1
2 
(|L� + |R�) 

c) In question b), one found the eigenvalues and eigenvectors of the hamil­
tonian. We found an expression for |v−� and |v+� in the {|R� , |L�} basis. Now 
we want to express L� in the {|v−� , v+�} basis. We see with no effort that 

2
| |

|v−� + |v+� = √
2 
|L� = 

√
2 |L�. So in the end |L� is just: 

|L� = √1
2 
(|v−� + |v+�) 

At t = 0, the text says that the quantum state of the system is |ψ(t = 0)� = 
|L� = √1

2 
(|v−� + |v+�). In order to find the time evolution of the system, all we 

have to do is to multiply each of the coefficiants in the expansion of ψ(t = 0)� 
hin the basis of the eigenvectors of Ĥ by the corresponding phase factor 

|
e−i 

E±t 

. 

¯¯

So the quantum state of the system at time t is just: 
E t− E+t 

h hψ(t)� = √1
2 
(e−i 

−� + e−i |v+�)| |v

¯¯

d) The probability to find the system in the quantum state |L� at time t is 
obtained by applying one of the quantum mechanics postulate: 

P (t) = | �L|ψ(t)� |2 

Using the expression for |ψ(t)� obtained in question c), we find this probability: 
E−t E+t 

h hP (t) = 14 e
−i + e−i 2 =| |
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Simplifying the expression gives us: 

P (t) = cos2( E+−E− t)2h̄ 

The molecule is then oscillating between the two configurations |L� and |R� with 
a frequency ω0 = h̄ . E+−E− 
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