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In order to find the quantum mechanical expression for a physical observable 
that has a classical analog, we use the Canonical quantization rules. Those 
rules state that if a classical observable O(�r, �p) is a function of the position �r 
and the momentum p�, then to obtain the quantum analog, we must replace the 
position by the position observable �̂r and the momentum by the momentum 
observable h̄ � Therefore we obtain a differential operator Ô that can act on a i �. 
wavefunction. 

1) The classical kinetic energy is a function of position and momentum, be­
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cause T (�r, �p) = 2
p�
m . Using the quantization rules can you express the quantum 

kinetic energy operator? 
2) In classical mechanics, the angular momentum is a function of position 

and momentum, because L(�r, �p) = �r × p�. Using the quantization rules find the 
expression of the quantum angular momentum operator. 

3) The electrical current generated by the motion of an electron is a classical 
eobservable, because �j = −e�v = − m �p. What is the expression of the quantum 

electrical current operator? 
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We have seen in the lectures that every physical observable has a representation 
in quantum mechanics. Indeed an observable is represented by a Hermitian 
operator. One of the reasons why we represent observable by Hermitian oper­
ators in quantum mechanics is because those operators have the great quality 
of having only real eigenvalues. This is important because the eigenvalues of 
an observable are the only possible outcomes of experiments measuring the 
associated physical quantity. 

1) Let Ô be an observable. That observable is then an hermitian operator. 
What does it mean to be hermitian for an operator? (Use both Dirac’s ”bra-ket” 
notation and wavefunctions to express hermiticity). 

2) Ô being an Hermitian operator, it has a complete set of eigenvectors 
ψn(x) and also a set of eigenvalues an Oψn(x) = anψn, such that ˆ (x) for all n. 
Using the above property of hermiticity, can you prove that any eigenvalue an 

is necessarily real? 
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We have seen in class that the set of all the eigenvectors of an operator is 
orthonormal. To verify this on an example, let’s consider the set of all the 
eigenfunctions of the total energy operator for an electron in a one dimensional 
infinite well. The eigenfunctions are: 

ψn(x) = a 
2 sin(nπ xa ) with n any positive integer and a the length of the well 

1) Can you verify that each of those functions is normalized? 
2) Let’s take two strictly positive integers n and m. Prove that ψn(x) and 

ψm(x) are orthogonal. 
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The momentum operator along x is given by px = h̄ ∂ and the position operator i ∂x 
is given by x. Let’s consider a wavefunction ψ(x, y, z). 

1) What is the result of applying xpx −pxx onto the wavefunction ψ(x, y, z)? 
2) What can you conclude about the commutator [x, px]? 
3) What is the result of applying ypx −pxy onto the wavefunction ψ(x, y, z)? 
4) What can you say about the commutator [y, px]? 
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In class, we saw that the projection of the angular momentum along the z axis, 
Lz , had a fairly simple expression in spherical coordinates: Lz = h̄ ∂ . We also � i ∂φ � 
know the expression of Lz in cartesian coordinates: Lz = h̄ x ∂ ∂ .i ∂y − y ∂x 

1) What are the expressions of x, y and z in terms of spherical coordinates 
r, θ and φ? 

∂2) Can you express the partial derivative with respect to x, ∂x , in terms 
of partial derivatives with respect to r, θ and φ and the spherical coordinates 
themselves using the chain rule? (there must remain no x, y and z in the 

∂expression for ∂x ) 
The chain rule in math: 
The chain rule states that if x is a function of u, v and w (x(u,v,w)), then 

the partial derivative with respect to x can be expressed as a sum of terms each 
involving a partial derivative with respect to one of the variables u, v and w: 

∂ ∂ ∂u ∂ ∂v ∂ ∂w 
∂x = ∂u ∗ ∂x + ∂v ∗ ∂x + ∂w ∗ ∂x 

Each of the terms ∂u , ∂v and ∂w can then be expressed in terms of u, v and w ∂x ∂x ∂x

∂u 1
because we know that ∂x = and that x is a function of u, v and w (same ∂x 

∂u 

result for ∂v and ∂w ).∂x ∂x 
∂3) In the same way express the partial derivative with respect to y, ∂y , 

in terms of partial derivatives with respect to r, θ and φ and the spherical 
coordinates themselves. 

4) Now add all the pieces together in the cartesian expression of Lz to see 
that all the terms expressed in spherical coordinates ”kill” each other and leaves 
you with h̄ ∂ .i ∂φ 
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