Solutions Chapter 6

6.1
a) a1 = sSin 6¢cos ¢, a12 = sin26 cos? ¢
ap=sSin0sin ¢, a2 =sin2 Osin2 ¢
o3 = CoS 6, az2 = cos? O
a2+ a2+ az? =

sinZ 0 (cos? ¢ + sin? ¢) + cos? H=1

b) a12002 + ap?a32 + az2a1?2 = sint 0 cos? ¢ Sin? ¢
+ 9n2 0sin? ¢ cos? 6 + sin? 6 cos? ¢ cos? 6

= sintfcos? gpsin2 ¢+ sin2fcos?2 & QED

6.2 From Eqg. 6.6
f 100 = Ko,
fi0 =Ko+ K, /4, and
fi1 = Ko+ K/3+ K,/27.

For Fe: From Fig. 6.1 From Eq. 6.6
f111— fa0 =~ 1.6 x 10* Jm? =K/3+ K, /27
foo—fiw = 1.2 x 10° Im?® = K /4

The second equation gives K, = 4.8 x 10" Jm® and using thisin the first gives K, = 0, in fair
agreement with the tabulated values, K, = 4.8 x 10* Jm* , K, = - 1 x 10" Jm?®.



For Ni From Fig. 6.1 From Eq. 6.6
fio0— Fin = 2.2x10° Jm® = -K,/3-K,/27
fuo—fi ad 1.0 x 10° Jm, = - K,/12 -K,/27

Subtracting these two equations gives K, = -4.8 x 10°* Jm?® and, thus, K, = - 1.6 x 10°
Jm?®. These values compare well with the tabulated values, K, = -4.5 x 10° and K, = -2.3
x 10° Jm®. Clearly, there is significant opportunity for error in estimating the areasin

Fig. 6.1 between the magnetization curves taken in different directions.

6.3 The energy gradient of Eq. 6.6 for small 8isgiven by K162 + (K1 + K2) sin22¢62/4.
For Ni, both K1 and K> are negative and K1 = K». Thusthe energy gradient is given by -
2Ky 01+ 3/2 62 sin2 2 ¢] which is steeper for ¢ = 450. Thus M rotates toward the

<111> directions, not <110>.

6.4 f4l00=Kg+ Ky <sin* 6 cos? ¢ Sin2 ¢ + sin? 6 cos? 6>
for small 6 we get f5100 =~ Ko + Ky <6>2 and
fall0=Kg+ Ky cos? 20 = Ko+ K1 <1 - (260)2/2 ...>2
fall0- fal0=K; (<1-(200)%/2 ..>2 - < 56%>) = K1 (1 - 5 662>
and using m(T) = <1 - §62/2...> for small 0 asin text

Af = (Ky/a)[m|10

6.5
fa®®Y =Ko+ Ky <sinZ > =~ Ko+ Ku<02>

fahard=Kg + K, <cos? 6 + cos? ¢ sin 6 >



~ Ko+ Ky<(1-62/2)2+cos? ¢ 62>
Since cos? ¢' averagesto 1/2
fahad=Kg+Ky<l-6022>
and f ghard - f jeasy = K, < 1 - 3 §62/2...> and m(T) = <cos 6>
=<1-622.. >for0or 6,
so fghard - fa8asy = Ky (T)/Ky [0] = [m(T)] 3.

6.7 In both cases the question we are asking is what is the measured magnetization in
the hard direction after removal of a saturating field that was applied in the hard
direction.

For Fe or Ni after magnetization in the hard direction (<111> and <100>,

respectively), the magnetization relaxes to the nearest easy axes, distributing itself
equally among them: Mg/3 along each of the three nearest <100> directions for Fe and

Md/4 along each of the four nearest <111> directions for Ni. These axes have projections
of 1/vV'3 onthe original field direction in each case, so the sum over the 3 or 4 near easy
axes gives a magnetization component along the hard direction of MgV 3 = 0.577Ms,
which is observed for both Fe and Ni after magnetization in the hard direction.

Cobalt on the other hand has uniaxial symmetry and after magnetization in the
hard base-plane direction, the remanence is zero because the nearest easy axisis the c

axis, 90 degrees from the base plane which has zero projection in the hard direction.

6.8 In the fully demagnetized state the i H
magnetization is uniformly distributed over the ¥

six directions, £x, xy, £z. Application then M
removal of afield along [110], assuming easy \IO -
wall motion, will result in a distribution along z X

+x and +yinH = 0. So we just use one angular



variable, taken as 0 in the figure. To write the energy density, note that

Hip = %(llo) and M = M,(cos,sin6,0) so that

M(cos@ +sino).

2

The normalized component of u,M parallel to H is then given by m = (cosf + sinf)/v2,

—uM - H =

which givesm= 1 at saturation, 6 = 45°. So the magnetic energy density is

f= -M(cose +5n6) +%sin229

V2
and
Ay M(—sine +00s0) + K, sin26 cos20.
d0 N2

But cos26 = (cosf - sinf) (cosH + sinf) so we can cancel the first factor here from the

torque equation; it is only zero at and above saturation. Thus, u,MH = v2K,sin26 (cost

+sinf). Using m= (cosB + sinf)V2 or (2nP-1) = sin(26), the equation of motion is
uMH = 2K, (2n?-1) m.

This can be solved by plotting H vs. m as shown below. Here the values u M, = 2T and

K, =6 x 10" Jm?® have been used.
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Thisfigure may be plotted as m vs H as shown below. From the analytic solution,



it is clear that saturation (m = 1) occurs for H =
2K, /u,Ms = H, = 60 kKA/m.
The same equation of motion appliesto

the y component of magnetization. The

initial magnetization curve of the component,
H (kA/m)

I ZK/M

M{/3, along + zwill involve rotation of that 0.0

component into + x and + y by 90°

wall motion. Thereafter, al of the

magnetization proceeds by the derived /
— . _‘| _0__

equation for M, and M,. 7

If wall motion is not easy, one would have to minimize the free energy including
the full anisotropy in 8 and ¢.

The case for the field applied along [111] is now treated. H = H,(1, 1, 1, )3
and the magnetization process is the same
for each Cartesian component of M. We

treat the component of M that initially lies

along z. At arbitrary field it is given by

M(H) = M, (sinBV2, sindlV2, cost). The

Zeeman energy is
-ty M - H =-(u,MH) (V2sinO + cosO)V3.

The cubic anisotropy for ¢ = 45° is given by

4
fa = Kl(sm 0

y +5in” 6 cos’ 6)

which has absolute minimaat 0 = 0 and & as well as at 6 = 7/2 with ¢ = 0, +n/2 and .
Saddle points can also be identified from Fig. 6.6a).
The zero-torque condition is given by:

dfl90=0=- (u,MHV3) (V2cosh - sind) + K, sin26 (1 + 3 cos26)/4,



which gives the equation of motion

V3K, sin(26)[1+ 3cos(20)]

H-= —
4u,M;  ~2cosf-sind

S

This equation can be plotted parametrically with m = (V2sind + cost)/V3 to give
the result shown below. Alternatively, it can be solved analytically (with little further
insight) as shown in Cullity, p. 227. The zero-torque solution shown as dashed lines
below can be excluded by looking at the stability condition, d*f/d6” > 0, which is negative

for the dashed solutions.

EI:II:III:II:I
H (k)

Note that the approach to saturation accelerates asm — 1. The remanence (at H =
0 or 6 = 0) is, from the definition of m, given by 1/V/3 = 0.577. AsH decreases from
positive saturation, the magnetization reaches the extremum in the second quadrant. At
this point, it is energetically favorable to jump to the third quadrant solution - if domain

wall motion has not already taken the system to that branch.



6.9 The energy surface is described by E = +27 M2 cos?6 - Ky cos?0 where 6 is the
angle between M and the surface normal. Energy minimization gives (K - 27 Mg?) sing
cosH = 0 which has solutions at 6 = 0 and /2 or at Ky = 27 Ms. Consideration of the
stability condition (Ky - 27 Mg2) cos26 > 0 indicates that 6 = 0 is the stable condition for
Ky > 27 M2 and 6 = /2 for Ky < 2n MZ. Only if Ky is exactly equal to 2x Mg? could
any intermediate orientation exist. There are other forms of anisotropy for which0 < 6 <

n/2 is stable for arange of valuesof K and M .





