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Chapter 8. SOLUTIONS 

8.1. The first costs more energy because the wall has a larger area than if it were

perpendicular to the top surface. The second wall violates the condition of continuity of 

the normal component of magnetization across the wall. Basically, it is a magnetically 

"charged" wall. Charged walls can exist under some conditions when the medium is 

magnetically hard. A longitudinal recording medium is a series of charged "head-to-

head" walls. 

8.2. The anisotropy constants in J/m3 are listed below with the calculated wall width, Eq. 

8.15, and wall energy density, Eq. 8.16. 

Co Ni80Fe20 Nd2Fe14B 

Ku (J/m3) 4.1 × 105 3 × 102 5 × 106 

δδδδdw(nm) 22 810 6.3 

σσσσdw(mJ/m2) 11 0.3 40 

8.3. The magnetoelastic energy, B1(exxαx 
2 + ...), simply adds to the anisotropy energy, 

Kusin2θ. For uniaxial strain, the ME energy becomes -2B1eosin2θ where θ is the angle 

between the direction of magnetization and that of the tensile strain direction. The tensile 

direction becomes a hard axis and the plane normal to it becomes an easy plane if B1eo > 

0. 
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Thus, for the three cases identified above, the net anisotropy can be expressed as 

follows: 

i) (Ku -2B1eo)sin2θ, ii) (Ku +2B1eo)sin2θ iii) Ku sin2θ + 2B1eosin2(π/2) 

These coefficients replace K in the expressions for wall energy, 4(AK)1/2, and width, 

π(A/K)1/2. 

Case i) Wall energy decreases and wall thickness increases for B1eo > 0; 

Case ii) Wall energy increases and wall thickness decreases for B1eo > 0; 

Case iii) The tensile stress leaves the magnetization in all parts of the wall equally 

affected so there is no change in wall energy or shape for this direction of stress. 

8.4. fa = Ksin2θ yields: 	(θ')2 - (K/A)sin2θ = C. 

For boundary conditions: 	 θ(-∞) = 0 :  0  - 0 = C 

θ(-∞) = -π/2: 0 - (K/A) = C 

For the first set of boundary conditions the solution is given in the text. For the 

second set of boundary conditions, the second integral is 

θ
A 

z − z o = dθ∫ 1 
K 

θ sin 2 θ + C 
o 

which has for its solutions the elliptic integrals. 
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8.5 The free energy density is a function of position x across the Néel wall width. It can 

be written 
x µoM 2 2t

f x  x s( )  = A 


∂θ ( )


 2 

+ K sin2 θ ( ) + 
 ∂x  u 2 δdw 

We can approximate the average x component of the magnetization across the wall width 

as <sin2θ> = 1/2, and the demagnetizing factor of the wall as t /δdw. Assuming a wall 

width of order 10-7 m and an anisotropy of 105 J/m3, and a magnetization of 1T, the three 

terms above have magnitudes or 104, 105 and 4 x 105 J/m3, respectively. None is 

insignificant. Without integrating this function, the energy per unit area can be 

approximated as 

 π  K 2 = A + u δdw + µ M tσ dw 
δ 

δdw o s 

dw  2 

to the wall width for 

with the wall width treated as a variable. Clearly this function is minimized with respect 

π 
u 

A

K 

2
δ dw = , independent of the magnetostatic contribution 

because in this approximation, the magnetostatic contribution is independent of the wall 

width. 

8.6 For an electrical circuit the power dissipation is i2R. For a magnetic circuit 

(Appendix 2.1) the energy density is φ2Rm = φ 2l/(µA) = B2lA/µ = BHV. In the free 

space about the sample BHV is equal to µoH2V. Inside the sample, using H ≈ -NMr, BHV 

is equal to µH2V ≈ µN2Mr2V . This quantity is positive definite and minimized by virtue 

of the product NMr which is allows larger Mr if N is small but demands smaller Mr 

when N is large. 
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8.7 	a) Equating total magnetostatic energy for a sphere to wall energy, σdw , gives: 

(1/6)µ0 Ms 2 (4/3)πrc 3 = 4(AK )1/2(πrc 2) 

rc = 18(AK)1/2/(µ0 Ms 2) 

b) For iron, A = 2 × 10-11 J/m, K1 = 5 × 104 J/m3 (but this is not a uniaxial anisotropy), 

µο Ms = 2.2 T, so rc ≈ 4.7 nm 

c) δdw = π(A/K)1/2 = 63 nm 

d) σdw = 4(AK)1/2  so δdw = πσdw  /(4 K) 

rc = (3/4)σdw /{(1/6) µ0 Ms 2} 

δdw  is proportional to the ratio of σdw to the anisotropy energy density. 

rc is proportional to the ratio of σdw to the magnetostatic energy density for a sphere. In 

the domain wall, it is the strength of the anisotropy energy that increases the energy inside the 

domain wall and therefore reduces the wall width. In the particle, it is the magnetostatic energy 

that drives the creation of the domain wall; the greater the magnetostatic energy, the less stable is 

a single-domain particle and the smaller is its critical radius. 
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