Solutions

9.1 a) For each surface of the film, $H_{\text{magstat}} = -(1/2)M = -M_{\text{s}}\cos\theta$, so $H_{\text{magstat}} = -M$.

 $f_{\text{magstat}} = -\mu_0 M_{\text{s}} \cdot H_{\text{magstat}}$ $f = -\mu_0 M_{\text{s}}H \cos\theta + (\mu_0/2) M_{\text{s}}^2 \cos^2\theta$ $\partial f/\partial \theta = 0$ gives: $H = M_{\text{s}} \cos\theta = M_{\perp}$ (after division by $\sin\theta$, which is zero only at and above saturation). Thus:

 $H/M_{\rm s} = M_{\perp}/M_{\rm s} = m$

The system saturates when $H = M_s = 1.27$ MA/m or when $B = B_s = 1.6$ T

b) [111] is the easy axis, so the only anisotropy is shape. Answer is same as a) but $H_a = H_{magstat} = -NM$ with N = 1/3 instead of 1. $m = 3H/M_s$ Saturation is achieved at (1/3) $\mu_0 M_s \approx 0.2T$.

9.2 Putting m = 1 in Eq. 9.13 gives $\sin 2\theta_0 = 0$ which can only be satisfied for $\theta_0 = 0$ or $\pi/2$. So the m(H) curves in Fig. 9.3 never reach m = 1 except for the two limiting cases, for $\theta_0 = 0$ or $\pi/2$.

9.3 The energy density, $f = K_1 \sin^2 \theta \cos^2 \theta - M_s H \cos \theta$, is plotted below. *f* is minimized for the equation of motion: $(m - 2m^3) - h = 0$, where $h = M_s H/2K_1$. This cubic equation may have up to three different solutions. The physically meaningful one(s) can be discerned by considering the energy as a function of θ .

The equilibrium orientation θ_0 decreases toward zero, i.e. $m = \cos\theta$ increases as H increases. At a field $h \approx 0.25$, the energy minimum near $\theta = 1.2$ vanishes and the magnetization may jump abruptly to $\theta = 0$, m = 1.

The calculated form of m versus h is shown. The discontinuous change in m is a first order transition; it corresponds to what is called a *switching field*. It can be

determined from the derivatives of the equation of motion, either $\partial h/\partial m = 0$ or $\partial m/\partial h = \infty$. Thus, the critical magnetization at switching is given by: $1 - 6m_c^2 = 0$. Thus $m_c = 0.408...$ (or $\theta_c = 66^\circ$) which occurs for $h_c = 2/(3\sqrt{6}) = 0.272...$

Fig. for Sol. 9.3. Left, normalized energy density as a function of θ (radians)for different values of reduced field, $h = H/H_a$. Shift in equilibrium orientation with h is indicated. Right, calculated *m*-*h* behavior: *m* increases with increasing *h* then at $m_c = 0.408$, jumps to m = 1.0. The dashed line in the *m*-*h* curve shows the continuation of the mathematical solution. Note that the initial slope $\partial m/\partial h\rangle_0 = 1$ or $\partial M/\partial H = M_s/H_a$ gives the value for the anisotropy field H_a . Thus, the value of K_1 can be determined by measuring m(h) and using either the initial slope or the critical field h_c .

Prob. 9.3. Left, normalized energy density as a function of θ (radians) for different values of reduced field, $h = H/H_1$. Shift in equilibrium orientation with *h* is indicated. Right, calculated *m*-*h* behavior: *m* increases with increasing *h* then jumps to m = 1.0 at $m_c = 0.408$.

9.4 The energy density is $f = -M_s B_0 \cos\theta + K_1 \cos^2 2\theta + B_1 e_{xx} (\cos^2 \theta - \upsilon \sin^2 \theta)$

 $\partial f / \partial \theta = 0$ gives $m[8K_1 (2m^2 - 1) + 2B_1 e_{xx} (1 + v)] = M_s B_0$ where $m = \cos\theta$ and $1 - m^2 = \sin^2\theta$. For $e_{xx} = 0$ this gives the result sketched as the solid line: $m_r = 1/\sqrt{2}$, saturation (m = 1) occurs at $H = (8K_1/\mu_o M_s) = H_a$.

9.5. a) From Eq. 6.6, setting $\theta = 90^\circ$, we have

$$f = K_{\rm u} \sin^2 \phi + (K_{\rm l}/4) \sin^2 2\phi. -\mu_{\rm o} M_{\rm s} H \sin\phi.$$

b) Energy surfaces:

c) Zero torque gives $2K_u \sin\phi \cos\phi + K_1 \sin 2\phi \cos 2\phi = \mu_0 M_s H \cos\phi$. Divide by $\cos\phi$ which is zero only at and above saturation. The parameter of interest is the component of magnetization along the field direction, $\sin\phi$, which we define as *m*. The equation of motion is then expressed:

$$2K_{\mu}m + 2K_{1}m(1 - 2m^{2}) = \mu_{o}M_{s}H$$

d) Numerical solutions are shown at the right for three values of the ratio of uniaxial to cubic anisotropy constants, $K_u/K_1 = 2$, 5 and 8. $K_1 = 10^4$ J/m³ and the field scale is $\mu_o H$ (T). Note that for $K_u/K_1 = 5$, the infinite slope point occurs at m = 1. For smaller K_u , the magnetization shows a discontinuity as was found in Prob. 9.3. For larger K_u , the *m*-*h* curve approaches a linear form typical of pure uniaxial, hard-axis magnetization.

9.7 Coercivity goes inversely as permeability. More exactly H_c is proportional to $(K_u + (3/2)\lambda_s \sigma)/\mu_o M_s$. In amorphous materials there is no magnetocrystalline anisotropy so *K* is very small. The coercivity then vanishes or goes through a minimum when magnetostriction vanishes.

9.9. *g* = 2.11.