
3.46 PHOTONIC MATERIALS AND DEVICES Homework Assignment 3—February 22, 2006 Due: March 1, 2006

- 1. Field polarization and Jones matrices.
 - (a) Write the Jones matrix relations for the operation of a half-wave plate on incident light that is (i) plane polarized along the \hat{x} -direction,
 - (ii) right circularly polarized.
 - (b) Quartz (crystallized silicon oxide) is a positive uniaxial (meaning $n_z = n_y \neq n_x$) crystal with $n_e = 1.553$ ('extraordinary,' $n_e = n_x$) and $n_o = 1.544$ ('ordinary,' $n_o = n_x = n_z$). Determine the thickness at which the crystal acts as a quarter-wave retarder for incident linearly (i.e. plane) polarized light ($\lambda_0 = 1.55 \ \mu$ m) that forms an angle of $\theta = 25^\circ$ with the x-axis ($E_x \neq 0$, $E_y \neq 0$, $E_z = 0$).

- 2. You're a lab technician working for a defense contractor. You've been asked to devise an Anti-Reflective (AR) coating for glass (SiO₂, refractive index n = 1.45) camera lenses so that people do not notice the glare from these lenses. The human eye has a high spectral response in the green-wavelength range of visible light; you decide to develop your AR coating to eliminate reflectivity at $\lambda_0 = 550$ nm.
 - (i) What is the refractive index of this AR coating?
 - (ii) What is the film thickness of this AR coating?
 - (iii) Calculate the net transmission matrix from light, through the AR coating, and into the glass lens. Compute the Reflectivity from this matrix, for $\lambda_0 = 350$, 550 and 650 nm. Plot a graph of Reflectivity versus wavelength for these three data points and sketch a line through them showing the spectral trend.
- 3. As a rough approximation for waveguide design, we can assume that the light wave electric field terminates to a zero value at both the upper cladding/core and core/lower cladding interfaces, forming a well-defined standing wave. This approximation is in fact a very good approximation for metal waveguides (air core surrounded by metal cladding), and it follows the classic 'particle-in-abox' analysis. Determine what the waveguide core thickness must be in order to support 1, 2 or 3 modes, at $\lambda_0 = 1.55 \ \mu$ m, for a core index of 1.6 and a cladding index of 1.5. (Note: we will discuss metal waveguides briefly at the start of Lecture 6 (Monday, Feb. 27), in order to better equip you for this question.)