3.46 PHOTONIC MATERIALS AND DEVICES

Homework Assignment 4—March 1, 2006 Due: 5pm, March 8, 2006

1. Photonic Crystals

Calculate the penetration depth x and stopband width $\Delta\lambda$ for $\lambda = 1.55 \,\mu\text{m}$ light incident on a 1D photonic crystal (with films thickness following the λ /4n criterion) made of:

- a) Si and SiO₂ pairs
- b) Si_3N_4 and SiO_2 pairs
- c) Si and Si₃N₄ pairs ($n_{Si} = 3.5, n_{Si3N4} = 2.0, n_{SiO2} = 1.445$)

2. Resonant Cavity (read more about 'mirror loss' in Fundamentals of Photonics)

A linear microcavity resonator of size d is bounded on either end by a Bragg Reflector with reflectivity R (at $\lambda = 1.55 \ \mu$ m). When a pulse of light transits across the microcavity and reflects off a Bragg Reflector, it loses some power. We can define a loss coefficient α_m , called the 'mirror loss,' which renormalizes reflector loss, per unit length of the cavity. Derive the following expression for mirror loss:

$$\boldsymbol{\alpha}_{m} = \frac{1}{d} ln \! \left(\frac{1}{R} \right)$$

Given a group velocity v_g for the light pulse, and assuming there are no other loss mechanisms inside the microcavity, derive an expression relating the microcavity Quality factor Q to α_m . The peak reflectivity at a Bragg Reflector stopband's central frequency can be derived as a function of reflector indices n_L , n_H and number of low/high index pairs p:

$$\mathsf{R} = \left| \frac{(\mathsf{n}_{\rm L} / \mathsf{n}_{\rm H})^{2p} - \mathsf{n}_{\rm H}^{2}}{(\mathsf{n}_{\rm L} / \mathsf{n}_{\rm H})^{2p} + \mathsf{n}_{\rm H}^{2}} \right|^{2}$$

Using all of the above relationships, determine what the resonance linewidth $\Delta\lambda$ will be for a SiO₂ microcavity (n = 1.445) designed to trap the first mode of λ = 1.55 µm light, entering at normal incidence (the propagation wavevector β lies fully along the z-axis direction of propagation). The cavity is bounded on either end by Bragg Reflectors made up of 3 pairs of Si/Si₃N₄ (Si3N4 is the layer in physical contact with the SiO₂ microcavity on either end). The Si/Si₃N₄ layers should be designed to meet the λ /4n condition. State what all your assumed film thickness values are.

3. Ring Resonator (dB/cm definition given in *Fundamentals of Photonics*)

If you have a single mode microring resonator ($n_1 = 1.445$, $n_2 = 3.5$, $n_{eff} = 2.2$), with $r = 5.04 \ \mu m$ and operating wavelength at 1.55 μm :

- a) What is the quality factor if the loss of the ring is 100 dB/cm? How about 10 dB/cm?
- b) What is the 3 dB bandwidth if the loss of the ring is 100 dB/cm? How about 10 dB/cm?

If you want to achieve a 1 nm tuning range:

c) What is the radius change you need to have? What is the refractive index change you need to have?