Study Guide for Unit 2

Important definitions. You should know the meanings of the following terms. (All of them are important, so none of them will be bold-faced.)

Term	Lecture	Reference	
Linearization	Lecture 8	Notes A	
Linear approximation	Lecture 8	Notes A	
Quadratic approximation	Lecture 8	Notes A	
Local/absolute maximum	Lecture 9	§4.1	p. 116
Local/absolute minimum	Lecture 9	§4.1	p. 116
Critical point	Lecture 9	§4.1	p. 116
Critical value	Lecture 9	§4.1	p. 116
Concave up	Lecture 9	§4.2	p. 120
Concave down	Lecture 9	§4.2	p. 120
Inflection point	Lecture 9	§4.2	p. 120

Skills checklist. Be able to do each of the following.

- 1. Compute derivatives of trigonometric functions.
- 2. Determine the linear and quadratic approximations to a function at a point.
- 3. Using the mean value theorem, the value of the function at one point, and bounds on the derivative in a neighborhood of this point, bound the function in the neighborhood of a point.
- 4. Find the critical points of a function.
- 5. Use the First Derivative Test to determine whether a function is increasing or decreasing.
- 6. Use the Second Derivative Test to determine the concavity of a function.
- 7. Find all local extrema and inflection points of a function. Determine which local extrema are absolute maxima/minima.
- 8. Give a rough sketch of the graph of a function, labelling all local extrema, inflection points, and vertical and horizontal asymptotes.
- 9. Solve applied maximum and minimum problems.