MODEL ANSWERS TO HWK #1

1.1.20. (a) 0. Suppose that @ = (a1, a9,a3). Then
0-@=(0-a1,0-as,0-a3)=(0,0,0)=0.
The case of a vector in R? is similar (and easier).
(b) @. Suppose that @ = (ay, az, az). Then
l-d=(1-ay,1-a9,1-a3) = (a,as,a3) =d.
The case of a vector in R? is similar (and easier).

1.1.22. Let Py = (%o, Y0, 20) and let P = (x,y, z) be a general point of
the parallelogram. Then

———

— —
OP =0OF, + PP.
Now
s -
PQP = \d + [Lb,
where 0 < A < 1land 0 < g < 1. (Indeed to get to P from Py, one

slides along the side parallel to @ and then slides in the direction of l_;)
So

(w,y,2) = (20, Yo, 20) + Alas, az, as) + pu(by, bz, bs)
= (l’o + )\a1 + ubl,yo + )\ag + Mbg, 2o+ )\Clg + Mbg)
1.1.24. (a) 4 mph.
(b) Since (5,10) = 1/10(50, 100) it takes six minutes until the plane is
directly above the skyscraper.
(c) In six minutes the plane climbs 2/5th of a mile. Now one mile is

5,280 feet (google is your friend), so the plane is 2112 feet above the
ground. So it clears the skyscraper by

2112 — 1250 = 862,

feet. R
1.2.3. (3,7, =7)=3i+7n)— Tk.
1.2.10 72 — j = (7, —1,0).
1.2.11 (a) We want ¢; and ¢y such that
(3,1) = (¢1 + 9,01 — ¢a),

that is, we want

C1+ Ccy = 3

Cl — Cy = 1.
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Adding both equations we get 2¢; = 4, so that ¢; = 2 and subtracting
both equations gives 2co = 2, so that co = 1. It is easy to check that
these values for ¢; and ¢y work.

(b) We want ¢; and ¢y such that

(3,=5) = (¢1 + 2,01 — ¢2),
that is, we want
c1+c=3
cp — Cy = —b.

Adding both equations we get 2¢; = —2, so that ¢; = —1 and subtract-
ing both equations gives 2c, = 8, so that c; = 4. It is easy to check
that these values for ¢; and ¢y work.

(c) We want ¢; and ¢y such that

(b1,b2) = (c1 + ca, 01 — C2),
that is, we want

¢ +ca=10b
Cl—CQZbQ.

Adding both equations we get 2¢; = by +bs, so that ¢; = (b;+b2)/2 and
subtracting both equations gives 2cy = by — by, so that ¢y = (by — by) /2.
We check that these values actually work:

bi +0b
—— (L) +

as expected and required.
1.2.14. (x,y,2) = (12,-2,0) + (5, —12,1) = (12 + 5, —2 — 12¢, 1).
1.2.16 (z,y,2) = (2,1,2)+t(3—2,—-1—1,5—2) = (2+¢t,1—2t,2+ 31).
1.2.24. If we plug in ¢t = 0, then we see that the point (—5,2,1) lies on
the first line. Now if this point lies on the second line, then we may
find ¢ such that (1 — 2¢,11 — 3¢,6t — 17) = (—5,2,1). Comparing the
first coordinates, we see that 1 — 2t = —5, that is, t = 3. It is easy to
see that then the second and third coordinates agree as well. So the
two lines share the point (—5,2,1).
If we plug in ¢ = 0 to the second line, then we get the point (1,11, —17).
Now if this point lies on the first line, then we may find ¢ such that
(2t — 5,3t +2,1 — 6t) = (1,11, —17). Looking at the first coordinate,
we must have ¢ = 3, and then it is easy to see that the second and
third coordinates come out right.
So the two lines share two points. As any two points determine a
unique line, /; and [y must indeed be the same line.
1.2.28. (a) (7,—2,1) and (13,1, —8).
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by — by

(1,—1) = (by,by) = b,




(b) (2,1,-3).

(¢c) When t — 2 = 1/6, so that t = 24 1/6, that is, after 130 seconds.
(d) The bird has y-coordinate equal to 4 after exactly six minutes. At
this point its xz-coordinate is 19, so no, the bird is never at this point

(assuming the bird does not cheat and change directions on us).
1.2.30. We want to find ¢ such that

5(1—4t) —2(t—3/2)+ (2t +1) =1,
so that
—20t+9=1,
and so t = —2/5. This is the point (1 —8/5,-2/5 —3/2,—-4/5+1) =
(—=3/5,—-21/10,—1/5).
1.2.35. We want to know if we can find s and ¢ such that
(2s+1,-3s,s—1)=(3t+1,t+5,7—1).

Adding the last two coordinates, we get —2s—1 = 12, so that s = 13/2.
Adding all of the coordinates together, we get 0 = 3t + 13, so that t =
—13/3. But then the third coordinate is a fraction with denominator
2, looking at the LHS and with denominator 3, looking at the RHS. As
this is absurd, there are no such s and ¢ and so the lines don’t intersect.
1.2.38. Let P = (z,y). The point A has coordinates (at,a) at time ¢.
We have

— —_— -

OP =0A+ AP.
Relative to A, the point P traces a circle, clockwise (anti, anti-clockwise,
as it were), starting at the point (0, —b). In other words the angle is
37/2 —t, at time ¢t and so

AP = (bcos(3m/2 —t),bsin(37/2 — t)) = (—bsint, —bcost).
Therefore
N
(x,y) = OP = (at — bsint,a — bcost).
There are machines, much like lawnmowers, whose job it is to make
holes in the lawn. They have spikes instead of blades. If the point P is
the endpoint of one of the spikes, then this is an example where b > a.
1.34. @-b=2-2+0=0, @ = vVA+1 =5, and ||b| = VI +4+9 =
V14,
138 . @-b=—-1+2—-2=—1,@|| = v3 and ||b]| = 3. It follows that
-1
1 =3v3cosh so that cos 6 Vel
So /2 < 6 < 7. In fact
0~ 1.764.
1.312. @-b=2—4+2=0. So proj; b = 0.
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1.3.13. Let @ = 2i — j+ k. Then

. 0] | A

U= Gl \/6(22 J+ k),
is a unit vector which points in the direction of 7.
13.1. 17 We suppose that neither @ nor b is the zero vector.
proj; b= pI‘OJb a if and only if either @ and b are orthogonal or a = b.
If @ and b are orthogonal, then both projections are the zero vector. If
@ = b then both projections are equal to @. So one direction is clear.
Suppose that projal; = projya. If @ and b are not orthogonal, then
both sides of this equation are non-zero vectors. As the LHS is parallel
to @ and the RHS is parallel to b, it follows that @ and b are parallel.
In tILis case the LHS is equal to b and the RHS is equal to d. But then
a=b.
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