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MODEL ANSWERS TO HWK #10 
(18.022 FALL 2010) 
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 dx
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=
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(i) The square of side a defined by 0 < x < a and 0 < y < a contains Qa, the quarter 
circle of radius a, and thus: 

a a ��
 π a2
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Qa 0 0 
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Taking the limit as a goes to ∞, we conclude that I2 ≥

(ii) The square of side a defined by 0 < x < a and 0 < y < a is contained in Q√
2a

quarter circle of radius 
√

2a, and thus: 
, the
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Taking the limit as a goes to ∞, we conclude that I2 ≤

(2) (5.5.15) �� � 2π � 3
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(3) (5.5.16)
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(4) (5.5.20)
 � sin 2θπ π 
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2
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(5) (5.5.21) The cardioid and the circle intersect at the points (0, 1) and (0, −1), and since we 
want the area inside the cardioid and outside the circle, the bounds of integration for θ must 

1




�


�


�

� 
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be π/2 to 3π/2. 

3� � 1−cos θ � 
2 1 
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(6) (5.5.22) 
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(7) (5.5.29) 
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(8) (5.5.30) 
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(9) (5.5.31) 

2��� � 2π � 5 � √25−z2 � 5 � �√25−z4 � 
(2 + x 2 + y 2)dV = rdzdrdθ = 2π r 2 + 

r �� dz 
4W 0 3 0 3 r=0� 5 625 − 50z2 + z4 � 5 725 23 z4 

= (25 − z 2 + 
4

)dz = (
4 
− 

2 
z 2 + 

4
)dz 

3 3 

656 
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(10) (5.5.32) By symmetry reasons, the total volume of the solid is 16 times the volume of the 
portion defined by z > 0, x > 0 and 0 < y < x: this sixteenth of the solid is bounded on the 
bottom by the plane z = 0, on the sides by the planes y = 0 and y = x and by the cylinder 
x2 + y2 = a2, and on top by x2 + z2 = a2 . We write the integral in cylindrical coordinates: 
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� a � √a2π 2 2 θ−r cos
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