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(18.022 FALL 2010)

(1) (4.2.1) (a) Vf(z,y) = (4 —2x,6 —2y) = (0,0) = (z,y) = (2,3).

(b) f(2+s,3+1t)— f(2,3) = —s* —t? < 0 for all s,¢. .. (2,3) is the maximum point.
(c) Hf(2,3) = < _02 _02 ) di = —2 < 0 and dy = 4 > 0, hence it is negative definite.
So (2, 3) is locally maximum.
(2) (4.2.6) Vf(z,y) = (—2¢y* + 32% — 1,4y — 4zy) = (0,0). Therefore y* = zy. If y = 0,

then z \/ig, \_/—é If y #0, then y> = 2. So 322 =22 —1=0and z = 1,—%. But since
x =1y> >0, = 1. So the critical points are (\/%;),O)7 (\_/—%,O), (1,1) and (1,—1). Since the

Hessian is H f(z,y) = ( _6Zy 12y_24—y 4x )’

2v/3 0 .
o at (\%,0): Hf = ( 0 \_/_g ) Saddle point.

e at (\_/—%,0): Hf = ( _20\/§ 4 ) Saddle point.
V3
0 _84 ) Local minimum.

e at (1,1): Hf:(

e at (1,—1): Hf =

—4
6 ..
4 . Local minimum.

4
8

(3) (4.2.8) Vf(z,y) = (e*siny, e* cosy) = (0,0). Since e* # 0 for all z, we have siny = cosy =

0. But there’s no such y. So there’s no critical point.

(4) (4.2.22) (a) Vf(z,y) = (2kx — 2y, —2z + 2ky) = (0,0) at (0,0), so it’s a critical point.

2k -2
-2 2k
minimum (i.e. the Hessian is positive definite) iff & > 1. It is local maximum (i.e. the
Hessian is negative definite) iff £ < —1.

(b) Vyg(z,y, z) = 2kx + kz, =2z — 2y, kx — 2y + kz) = (0,0,0) at (0,0,0), so it’s a critical

Hf(0,0) = ( ), and d; = 2k, dy = 4k* — 4. So (0,0) is a nondegenerate local

2k 0k
point. Hf(0,0,0) = 0 —2 =2 |,andd; =2k, dy = —4k, d3 = —2k* — 8k. So (0,0,0)
k- -2 k

is a nondegenerate local maximum (i.e. the Hessian is negative definite) iff £ < —4. On the
other hand, (0,0,0) cannot be a nondegenrate local minimum (i.e. the Hessian is positive

definite).

(5) (4.2.23) (a) Vf(z,y) = (2ax,2by) = (0,0) = (x,y) = (0,0). So the origin is the only critical

2a

point. H f(0,0) = ( 0 206 is positive definite iff @ > 0,0 > 0, and negative definite iff
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(6)

(7)

(8)
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a < 0,b < 0. So the origin is a local minimum if a,b > 0, local maximum if a,b < 0, and
saddle point otherwise.
(b) Vf(x,y,z) = (2ax,2by,2cz) = (0,0,0) = (z,y,2) = (0,0,0). So the origin is the only

2 0 O
critical point. H f(0,0,0) = 0 20 0 is positive definite iff a > 0,b > 0,¢ > 0, and
0 0 2¢c

negative definite iff a < 0,b < 0,¢ < 0. So the origin is a local minimum if a, b, ¢ > 0, local
maximum if a, b, ¢ < 0, and saddle point otherwise.

(c¢) The very same argument as in (a) and (b) says the origin is the only critical point.
Also the Hessian is the diagonal matrix with 2a; at each i-th diagonal entry. Clearly it is
positive definite iff all a; are positive, and negative definite iff all a; are negative. So the
origin is a local minimum if all a; are positive, local maximum if all a; are negative, saddle
point otherwise.

(4.2.33) Solve V f(x,y) = (cosz cosy, —sinzsiny) = (0,0) where 0 < z < 2r and 0 < y <
2. If cosx = 0 thensinz # 0, sosiny = 0, and (z,y) = (7/2,7), (37/2, 7). If cosx # 0 then
cosy = 0, so siny # 0 and sinz = 0. So (x,y) = (7, 7/2), (7,37/2). Evaluating f at each
of these critical points, we get f(n/2,7) = —1, f(37/2,7) = 1, f(7,7/2) = f(7,37/2) = 0.
Now look at the boundaries. If x = 0 or x = 27, then f(z,y) = 0. If y = 0 or y = 27,
then f(z,y) = sinz, hence the maximum is 1 when x = 7/2 and the minimum is -1 when
x = 3mw/2. Therefore comparing all the values, we conclude that the absolute maximum
value of f is 1, and the absolute minimum value of f is -1 in R. (Actually in this problem,
if one notices that f cannot be greater than 1 or less than -1, just finding points in R where
f has value 1 or -1 confirms you that the absolute maximum and minimum values of f are
1 and -1.)

(4.2.46(b)) Solving V f(z,y) = (3ye®—3e3*, 3 —3y?) = (0,0), we get e® = 32, 3y —3y* = 0.

So (0, 1) is the only critical point. H f(0,1) = 0 is negative definite, hence (0, 1)

3
3 —6
is a local maximum. However, let us fix x = 0 and send y to the negative infinity, then
lim, o f(0,y) = lim,_,_ 3y — 1 —y® = co. Therefore f does not have a global maximum.

yz 2y + 2)
(i) Using Lagrange multiplier method, we get | zax | = A | 2(z4+2x) |. So (y—z)z =
xy 2(z +y)

2A(y — ). If z # y then z = 2, so 2A\y = 2\ (y + 2)), and 2\ = z = 0, and zy = 0,
this is impossible since a # 0. So x = y Similarly repeat this argument, and we get
r =y =2 So 6x? = a implies (z,y, 2 \/_ \/_ \/_ is the only critical point.

(il) Without loss of generality, let x < ﬁ
that V(Q) = zyz < 3§ 2= (5)3/2 = V(P)

(iii) K is defined by closed relations, hence it is closed. To prove that K is bounded, notice
that § = oy +yz+zex=2(y+2) +yz >2(y +2) > 2va . Hence z is bounded above

3v6
as well as below. Similarly y, z are also bounded. Hence K is contained in a bounded

box, hence K is bounded.

a

at . Since yz < zy + yz + xz = 5, it implies



MODEL ANSWERS TO HWK #8 (18.022 FALL 2010) 3

(iv) Since K is compact, there exists a maximum point of V. By (i), we know that V" has the
only critical point P. To see the values of V on the boundaries of K, let x = ﬁé without

loss of generality. Since yz < xy+yz+xz = §, we have ryz = %yz < (832 =V(P).
Hence the value of V' on the boundary is always less than V' (P). Therefore V' has the
maximal value on K at P.
(v) By (ii), we know that V' has smaller value than V(P) at any point outside of K.
Therefore V' has the maximal value on A at P.
(9) (4.3.2) Vf(z,y) = (0,1) = AVg(z,y) = N4z, 2y). .. (z,y) = (0,2), (0, —2).
(10) (4.3.8) (1,1,1) = A(—2x,2y,0) + u(1,0,2). So p=1/2, 2\y = 1, —2Az + p = 1. Therefore
A==£V3/4and (z,y,2) = (1/V3,2/V3,(1+1/V3)/2),(1/V3,-2/V3,(1 - 1/V/3)/2).
(11) (4.3.18) Since the sphere is closed and bounded, it is compact. Hence there must be
maximum and minimum points. By Lagrange multiplier method, we have (1,1,—1) =
A(2x,2y,22), hence x = y = —z. From 3z? = 81, we get two critical points (z,y,z) =
(3v/3,3v/3, —3v3), (—3v/3, —3v/3,3V/3). At each point, the value of f is 9v/3 and —9v/3.

These are the maximum and minimum values.
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