MODEL ANSWERS TO HWK #9

1. There are a number of ways to proceed; probably the most straight-
forward is to view the region D as something of type 2:
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2. There are a number of ways to proceed; probably the most straight-
forward is to view the region D as something of type 1:
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The region in question is bounded by the curves x = 0, y = 0 and
y?> =4 — x. So, reversing the order of integration, we get
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5. This is a region of type 4; we view this as an elementary region of
type 1. The projection of W onto the xy-plane is the elementary region
of type 2 bounded by y = 22 and y = 9.
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as z, 2%, 7 and 2° are all odd functions. In retrospect, we could have

decide very early on that the integral is zero;

is clearly an even function of z, so that zJ(z) is an odd function.

6. This is a region of type 4; we view this as an elementary region of
type 1. The projection of W onto the xy-plane is the elementary region
of type 2 bounded by x =0, y = 3 and y = .
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7. This is the region bounded by the planes y = +1, x = 3%, 2 = 0 and
x + z = 1. So the other five ways to write this region are:
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8. T is a linear transformation; therefore it takes straight lines to
straight lines. So D is the parallelogram with vertices

T(0,0) = (0,0) T(1,3)=(11,2) T(~1,2)=(4,3) T(0,5) = (15,5).

9. Since T is supposed to take (0,5) to (4,1), it must take (0,1) t
(4/5,1/5). Since T is supposed to take (—1,3) to (3,2) and (1,2) t

(1,—1) it should take

(6]
(6]

(5,0) =3(1,2) — 2(—1,3),

to
3(3,2) — 2(1, —1) = (7,8).
Therefore
T(1,0) = (7/5,8/5).
Therefore

= (15 4) (2):

10. We have z = v and y = (v + u)/2. The Jacobian is
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This is nowhere zero. As the map is linear, it follows that the map is
injective, and so by the Inverse function theorem it defines a diffeomor-
phism. Therefore

2 (x/2)+1 , 1 (27 (2 ,
/ / 2°(2y — 2)e® P dz | dy = —/ (/ u’ve’ dv) du
0 z/2 2 0 0
1 [? 2
= —/ u® [6”2} du
4 Jo 0

et —1
= 24 [uﬁ}o
8t —1)
3
11. Let u =22 +y and v = 2 —y. Then
0(u, x) 2 1
= = —3.
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This is nowhere zero. As the map is linear, it follows that the map is
injective, and so by the Inverse function theorem it defines a diffeomor-
phism. Therefore,
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12. Let u =y + 22 and v = 2y — . Then D* is the region
[0,5] x [-5,0],

in uv-coordinates.




So
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I(u,v) (u,v) = 5
This is nowhere zero. As the map is linear, it follows that the map is
injective, and so by the Inverse function theorem it defines a diffeomor-
phism. Therefore
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