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Linear Spaces

We have seen (12.1-12.3 of Apostol) that n-tuple space

v has the following properties:

n
‘Addition:
1. (Commutativity) A + B = B + A.
2. (Associativity) A + (B+C) = (A+B) + C.
3. (Existence of zero) There is an element ]
such that A + 0 = A for all A.
4. (Existence of negatives) Given A, there is a

B such that A + B = 0.
Scalar multiplication:
5. (Associativity) c¢(dA) = (cd)A.
6. (Distributivity) (c+d)A = cA + dA,
c(A+B) = cA + cB.
7. (Multiplication by unity) 1A = A,

Definition. More generally, let V be any set of objects

(which we call vectors). And suppose there are two operatiohs on
V, as follows: The first is an operation (denoted +) that
assigns to each pair A, B of vectors, a vector denoted A + B.
The second is an operation that assigns to each real number c¢
and each vector A, a vector-denoted cA. Suppose also that the

seven preceding properties hold. Then V, with these two opera-

tions, is called a linear space (or a vector space). The seven

properties are called the axioms for a linear space.
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There are many examples of linear spaces besides n-tuple space Vn .
The study of linear spaces and their properties is dealt with in a subject called
Linear Algebra. We shall treat only those aspects of linear algebra needed
for calculus. Therefore we will be concerned only with n-tuple space
Vn and with certain of its subsets called "linear subspaces" :

Definition. Iet W be a non-empty subset of Vn ; Suppose W

is closed under vector addition and scalar multiplication. Then W is

called a linear subspace of Vn~ (or sometimes simply a subspace of Vn .)
To say W is closed under vector addition and scalar multiplication
means that for every pair A, B of vectors of W, and every scalar c,
the vectors A + B anrd cA belong to W. Note that it is automatic that
the zero vector 0 belongs to W, since for any A in W, we have 0 = OA.
Furthermore, for each A in W, the vector -A is also in W. This means
(as you can readily check) that W is a 1linear space in its own right (i.e.,
it satisfies all the axioms for a linear space).

Subspaces of Vn mey be specified in many different ways, as we shall

see.

Example 1. The subset of Vn consisting of the O0-tuple
alone is a subspace of Vn; it is the "smallest possible" sub-
space. And of course Y is by definition a subspace of Vi
it is the "largest possible" subspace.

Example 2. Let A be a fixed non-zero vector. The subset of Vn
consisting of all vectors X of the form X = cA is a subspace of Vi
It is called the subspace spanned by A, In ﬁhe case n =2 or 3, it can

be pictured as consisting of all vectors lying on a line through the origin.
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Example 3. Let A and B be given non-zero vectors that are not

parallel. The subset of Vn consisting of all vectors of the form

X=cA + dB

is a subspace of Vn' It is called the subspace spanned by‘ A and B.

In the case n = 3, it can be pictured as consisting of all vectors lying

in the plane through the origin that contains A and B.

We generalize the construction given in the preceding

examples as follows:

Definition. Let S = §A1, ey Ag} be a set of vectors in Vn .

A vector X of Vn of the form

X = clA1 + ... F CkAk

is called a linear combination of the vectors Al""'Ak . The set W of
all such vectors X 1is a subspace of Vn’ as we will see; it is said to be

the subspace spanned by the vectors Al,...,Ak . It is also called the

linear span of Al,}..,Ak and denoted by L(S).

Let us show that W 1is a subspace of Ve If X and Y
belong to W, then
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X = clAl + eee 4 ckAk and Y = dlAl + e 4 dk "

for some scalars cy and di' We compute

X.+Y = (cl+dl)Al + e 4 (ck+dk)Ak,

axX

(acl)Al + e + (ack)Akl

so both X + Y and aX belong to W by definition. Thus W

is a subspace of V.

Giving a spanning set for W is one standard way of specifying W.
Different spanning sets can of course give the same subspace. Fcr example,
it is intuitively clear that, for the plane through the origin in Example 3,
any two non-zero vectors C and D that are not parallel and lie in this

plane will span it. We shall give a proof of this fact shortly.

Example 4. The n-tuple space Vn has a natural spanning set,

namely the vectors

‘El = (1,0,0,...,0),
E, = (0,1,0,...,0),
E . = (0,0,0,...,1). ’

These are often called the unit coordinate vectors in Vn' It

is easy to see that they span V for if - X = (xl,...,xn) is

nl

an element of Vn’ then

X = xlEl + e + XnEn'
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In the case where n =2, we often denote the unit
coordinate vectors El and E, in v, by I and ;,
respectively. In the case where n = 3, we often denote El,
E2, and- E3 by I, 3, and k respectively. They are pic-

tured as in the accompanying figure.

7 %
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A

Example 5. The subset W of V3 consisting of all vectors of
" the form (a,b,0) is a subspace of V3. For if X and vy
are 3-tuples whose third component is 0, so are X + Y and

cX. It is easy to see that W 1is the linear span of (1,0,0)

and (0,1,0).

Example 6. The subset of Vs consisting of all vectors of the
form X = (3a+2b,a-b,a+7b) 1is a subspéce of V3. It consists

of all vectors of the form

X =a(3,1,1) + b(2,-1,7),

B

so it is the linear span of (3,1,1) and (2,-1,7).

Example 7. The set W of all tuples (xl,xz,x3,x4) such that

3x1 - X, + 5x, + X = 0
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is a subspace of V, , as you can check. Solving this equation for x we see

q !
that a 4-tuple belongs to W if and only if it has the form

X '= (xl, Xor Xgs —3x1 + X, - 5x3),

where X, ar:d Xy and Xy are arbitrary. This element can be written in the form

X = xl(l,0,0,—B) + xz(O,l,O,l) + x3(0,0,l,—5).

It follows that (1,0,0,-3) and (0,1,0,1) and (0,0,1,-5) span W.

Exercises

1. Show that the subset of V., specified in Example 5 is a subspace

3

of V3. Do the same for the subset of V specified in Example 7. What can

a
you say about the set of all (kl,...,xn) such that a;x; + ...+ ax = 0

in genéral?l (Here we assume A = (al,...,an) is not the zerc vector.) Can you
give a geometric interpretation?

2. In each of the following, let W denote the set of
all vectors (x,y,z) 1in V3 satisfying the condition given.
(Here we use (x,y,z) instead of (xl,xz,x3) for the general
element of V3.) Determine whether W is a subspace of V3.

If it is, draw a picture of it or describe it geometrically,

and find a spanning set for W.

(a) x = 0. (e) X =Y or 2xX = zZ.
(b) x +y = 0. (£) <2 - Y2 =0
= 2
(c) x + vy 1. (g) <% y< = 0.
(d) x =y and 2x = z

3. Consider the set F of all real-valued functions

defined on the interval [a,b].



A7

(a) Show that F is a linear space if f + g
denotes the usual sum of functions and c<f denotes the usual
product of a function by a real number. What is the zero
vector?

(b) Which of the following are subspaces of F?

(i) All continuous functions.
(ii) All integrable functions.
(iii) All piecewisefmonotonic functions.
(iv) All differentiable functions.
(v) All functions £ such that f(a) = 0.

(vi) All polynomial functions.

Linear independence

Definition. We say that the set S = {Al,...,Ak} of vectors of vy

spans the vector X if X belongs to L(S), that is, if

X = clA1 + ..+ CkAk

for some scalars Cye If S srans the vector X, we say that S spans X

uniquely if the equations

Kk
X = :E: C.A, and X = diA

[re
||[VX77
—

imply that c; = di for all 1i.

It is easy to check the following:

Theorem 1. Let S = ZAI,...,AKK be a set of vectors of V ; let
X be a vector in L(S). Then S spans X uniquely if and only if S sgans

the zero vector 0 uniquely.
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Proof. - Note that 0 = ‘E]OAi . This means that S spans the zero
vector uniquely if and only if the equation
implies that c; = 0 for all i.

Suppose S spans 0 uniquely. To show S spans X uniquely, suppose

kK

k
Xx= >'cA and X= S aa, .
=1 i=1

Subtracting, we see that

’

K
0 = g CHER LY
i=1

whence ci - di =0, or ci = di , for all 1.

Ceonversely, suppose S spans X uniquely. Then

X = 3 XA
i=1

for some (unique) scalars X; . Now if

k
R
i=1
it follows that
k
X = X+0 = El (x; +c;)a; .

Since S spans X uniquely, we must have X; =X +tcp o, 0r ¢y = 0, for all 1i.
This theorem implies that if S spans one vector of L(S) uniquely,

then it spans the zero vector uniquely, whence it spans every vector of L(S)

uniqUely. This condition is important enough to be given a special name:

Definition. The set S = ZAI,...,AK‘} of vectors of Vn is said to

be linearly independent (or simply, independent) if it spans the zero vector

uniquely. The vectors themselves are also said to be independent in this
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situation.

If a set is not independent, it is said to be dependent.

Example 8. If a suﬁset T of a set S 1is dependent, then S itself
is dependent. For if T spans 0 ncn-trivially, so does S. (Just add on the
additional vectors with zero coefficients.)

This statement is equivalent to the statement that if S 1is independent,
then so is any subset of S. |

Example 9. Any set containing the zero vector 0 1is dependent. For

example, if S = {Al"'°'A£§ and Al = 0, then

0 = 1A, + OA2 L OAk .

1

Example 10. The unit coordinate vectors EjreeesBy in V, span 0

uniquely, so they are independent.
Example 11. Let S = gAl,...,Aﬁﬁ . If the vectors Ai are non-zero

and mutually orthogonal, then S 1is independent. For suppose
K

0 = ZciAi.

i=1

Taking the dot product of both sides of this equation with A1 gives the equation

(since A;’A; =0 for i #1). Now A, # 0 by hypothesis, whence A "A # 0,

whence ci = 0. Similarly, taking the dot product with Ai’ for the fixed index

j shows that cj = 0.
Scmetimes it is convenient to replace the vectors Ai by the vectors

By = Ai/UAiH . Then the vectors B.,...,B_ are of unit length and are mutually

I

orthogonal. Such a set of vectors is called an orthonormal set. The coordinate

k

vectors El""’En form such a set.

Example 12. A set ccnsisting of a single vector i is independent
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if A #0. A set consisting of two non-zero vectors A,B is independent if and
only if the vectors are not parallel. More generally, one has the following reéult:
Theorem 2. The set S = {Al,...,Ak3 is independent if and only if none

of the vectors Aj can be written as a linear combination of the others.

Proof. Suppose first that one of the vectors equals a linear

combination of the others. For instance, suppose that

.

5 T TP B

then the following non-trivial linear combination equals zero:

A, - c,A, - ce. = ckAk = 0.

1 272

Conversely, if

CiAp * CoAy + vee + CBx = 0.

where not all the C; are equal to zero, we can choose m so

that Sn # 0, and obtain the equation

Am = -(cl/cm)Al - e = (ck/cm)Ak'

where the sum on the right extends over all indices different

from m. a

Given a subspace W of V,r there is a very important relation that

holds between spanning sets for W and independent sets in W :
Theorem 3. Let W be a subspace of v, that is spanned by the k

vectors Al""’Ak . Then any independent set of vectors in W contains at most

k wvectors.
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Proof. Let EBI,...,BQE be a set of vectors of W; 1let m> k. We

wish to show that these vectors are dependent. That is, we wish to find

scalars xl,...,xm , nct all zero, such that

m
DAL
j=1

Since each vector Bj belongs to W, we can write it as a linear combination of
the vectors Ai . We do so, using a "double-indexing" notation for the coefficents,

as follows:

B, = a,, A, + aj,A, + ... + aijk .

Multiplying the equation by Xj and summing over j, and collecting terms, we

have the equation
n

m m
jz%ijj = (;gl gialj)Al + (jéa XjaZj)AZ & (;Ea Xjakj)Ak .
In order for i:Xij to equal 0 , it will suffice if we can choose the xj
so that coefficient of each vector Ai in this equation equals 0. Ncw the
numbers aij are given, so that finding the Xj is just a matter of solving a
(homogeneous) system consisting of k equations in m unknowns. Since m> k,
there are more unknowns than equations. in this case the system always has a non-trivial
solution X (i.e., one different from the zerc vector). This is a standard fact
about linear equations, which we now prove. [

First, we need a definition.

Definition. Given a homogeneous system of linear equations, as in (*)
following, a solution of the system is a vector (Xl""’xn) thaﬁ satisfies

each equation of the system. The set of all solutions is a linear subspace of

Vn (as you can check). It is called the solution space of the system.




Al2

It is easy to see that the solution set is a subspace. If we let

A, = a, A, 4 eeey Q.
b (Jl' J, ! Jn)

be the n-tuple whose components are the coefficerts appearing in the

jth equation of the system, then the solution set consists of those X

such that AJ.-X=O for all _] If X and Y are two solutions, then

A, (X+Y) = A.'X + A.'Y =
J( ) 4 JY 0

and -
A, (cX) = c(AJ.'X) = 0

Thus X +Y and cX are also solutions, as claimed.

Theorem¥, Given a homogeneous system of k linear equations
in n unknowns. 1If k is less than n, then the solution space con-
tains some vector other than 0.

Proof.. We are concerned here only with proving the existence of some
solution other than 0, not with actually finding such a solution in practice,
nor with finding all possible solutions. (We will study the practical prob-
lem in much greater detail in a later section.)

We start with a system of k equations in n unknowns:

anty + a1ts + - - - A A1t = 0,

AnTt + @a9Ty + ¢ - ¢ F AgaTa = 0,

(*)

ATy + Arets + ¢ - -+ Grata = 0.

Our procedure will be to reduce the size of this system step-by-step by
eliminating first xy, then z,, and so on. After k — 1 steps, we will be re-
duced to solving just one equation and this will be easy. But a certain
amount of carc is nceded in the description—for instance, if ayy = - . . =
an = 0, it is nonsense to speak of “eliminating” z,, since all its coeffi-
cients are zero. We have to allow for this possibility.

To begin then, if all the cocflicients of z, are zero, you may verify that
the vector (1, 0, ...,0)is asolution of the system which is different from
0, and you are done. Otherwise, at least one of the coefficients of 7y is
nonzero, and we may suppose for convenience that the equations have
been arranged so that this happens in the first equation, with the result
that ay £ 0. We multiply the first cquation by the scalar as/ay and then
subtract it from the sccond, eliminating the z;-term from the second
equation. Similarly, we eliminate the z,-term in each of the remaining
equations. 'The result is a new system of linear equations of the form
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(**) an®t+ aprs+ - - - + apx, =0,

baaTa + + - - + bop¥a = 0,

6&212 + -+ bknxn = 0.

Now any solution of this new system of equations is also a solution of the
old system (), because we can recover the old system from the new one: -

we merely multiply the first equation of the system (*+) by the same
scalars we used before, and then we add it to the corresponding later
equations of this system.

The crucial thing about what we have done is contained in the following
statement: 1f the smaller system enclosed in the box above has a solution
other than the zero vector, then the larger system (+#) also has a solution
other than the zcro vector [so that the original system (*) we started
with has a solution other than the zcro vector]. We prove this as follows:
Suppose (({2, Cee, d,,) is a solution of the smaller system, different from
((), ..., 0). We substitute into the first equation and solve for zy, thereby
obtaining the following vector,

((—‘1/(111)((lndz + o anda), ds, ... d,.),

which you may verify is a solution of the larger system (s+).

In this way we have reduced the size of our problem; we now need only
to prove our theorem for a system of k — 1 equationsin 7 — 1 unknowns.
If we apply this reduction a sccond time, we reduce the problem to prov-
ing the theorem for a system of & — 2 cquationsin n — 2 unknowns. Con-
tinuing in this way, after & — 1 elimination steps in all, we will be down
to a system consisting of only one equation, inn — k 4+ 1 unknowns. Now
n —k 41> 2 because we assumed as our hypothesis that n > k; thus
our problem reduces to proving the following statement: a “system” con-
sisting of one linear homogeneous equation in two or more unknowns always
has a solution other than 0.

We leave it to you to show that this statement holds. (Be sure you
ccnsider the case where one or more or all of the coefficents are zero.) ([

_ QX'amgle 13. We have already noted that the vectors El’ .. .,En Span all
of Vn' It follows, for example, that any three vectors in V2 are dependent,
that is, one of them equals a linear combination of the others. The same holds

for any four vectors in V3. The accompanying picture makes these facts plausible.
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Similarly, since the vectors El""’En are independent, any spanning

set of Vn must contain at least n vectors. Thus no two vectors can span V3,

and no set of three vectors can span V4.

Theorem 5. Let W be a subspace of Vn that does not consist of

0 alone. Then:
(a) The space W has a linearly independent spanning set.

(b) Any two linearly independent spanning sets for W have the same

>
number k of elementgj k<n unless W 1is all of Vn'

Proof. (a) Chroose A #0 in W. Then the set {Ai& is independent.
In general, suppose iAl,...,A£§ is an independent set of vectors of W. If
this set spans W, we are finished. Otherwise, we can choose a vector Ai+1
of W that is not in L(Al""'Ai)' Then the set iAl""'Ai'Ai+£} is

indepehdent: For suppose that

c]Al + ...+ CiAi + ci+lAi+1 = 0

for some scalars ci not all zero. If c,

141 = 0, this equation contradicts

independerce of ZAI,...,Ai} , while if i1 # 0, we can solve this equation

for Ai+1’ contradicting the fact that Ai

+1 does not belong to L(Al”"’Ai)'

Continuing the process just described, we can find larger and larger
independent sets of vectors in W. The process stops only when the set we obtain

spans W. Dces it ever stop? Yes, for W is contained in Vn'- ard Vn contains
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no more than n independent vectors. So the process cannot be repeated
indefinitely! |
(k) Suppose S = gAl""’AkE and T = {Bl,...,Bj} are two
linearly independent spanning sets for W. Because S 1is independent and T
spans W, we must have k< j , by the preceding theorem. Because S spans
W and T 1is independent, we must have k> j. Thus k = j.
Now Vn contains no more than n independent vectors; therefore we
must have k £ n. Suppose that W 1is not all of Vn' Then we can chooee
a vector Ak+1 of Vn that is not in W. By the argument just given, the |
set zAl""’Ak’Ak+l} is independent. It follows that k+1 < n, sc that k< n. [}
Definition. Given a subspace W of V, that does not consist of 0
alone, it has a linearly independent spanning set. Any such set is called a
basis for W, and the number of elements in this set is called the dimension of W.
We make the convention that if W consists of 0 alone, then the dimension of
W 1is zero.
Example 14. The space ‘Vn has a "natural" basis consisting of the

vectors E .,En . It follows that Vn has dimension n. (Surprise!) There

17"

are many other bases for Vn" For instance, the vectors

h
]

1 = (1,0,0,...,0)

>
]

2' (l,l,o,...,O)

e
|

(L,1,1,...,0)

A
n

]

(1,1,1,...,1)

form a basis for Vn, as you can check.
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Exercises

1. Consider the subspaces of V3 listed in Exercise 2, p. A6. Find bases for
each of these subspaces, and fird épanning sets for them that are not bases;

2. Check the details of Example 14.

3. Suppose W has dimension k. (a) Show that any independent set in
W consisting of k vectors spans W. (b) Show that any spanning set for W
consisting of k vectors is independent.

4. Let S = ZAI,...,AmE be a spanning set for W. Show that S
contains a basis for W. [giggz Use the argument of Theorem 5. ]

5. Let gAi""’Akl be an independent set in V, - Show that this

set can be exténded to a basis for Vn . [Hint: Use the argument of Theorem 5.]

6. If V and W are subspaces of Vn and Vk' respectively, a

function T : V =5 W 1is called a linear transformation if it satisfes the usual

linearity properties: ‘
T(X +Y) = T(X) + T(Y),
T(cX) = cT(X).
If T is one-to-one and carries V onto W, it is called & 1linear.
isomorphism of vector spaces.
.«:B

Stippose Al""’Ak is a basis for V; 1let B be arbitrary

1" Kk
veétors of W. (a) Show there exists a linear transformation T : V —>v¢
such that T(Ai) = Bi fcr all i. (b) Show this linear transformationbis unique.
7. Let W be a subspace of Vi let 'Al,...,Ak be a basis for W.
Let X, Y be vectors of W. Then X=3$xA, and Y =¢ y;A; for unique
scalars Xy and yi. These scalars are called the components of X and Y,
respectively, relative to the basis Al""’Ak’
(2) Note thatv X+Y =£(xi+ yi)Ai and X =£ (c:xi)Ai . Conclude
that the function T : V. —5 W defimed by T(x),...,x) = z‘ xA; is a

linear isomorphism .
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(k) Suppose that the basis A]""'Ak is an orthonormal basis. Show

that X'Y =‘z:xiyi - Conclude that the isomorphism T of (a) preserves the

dot product, that is, T(X)'T(Y) = X-y .
8. Prove the following: aﬁ'?'dgzgfeéhhﬂu””“"”“
Theorem. If W is a subspaceiof Vh, then W has an orthonormal basis.

Froof. Step 1. Ilet Bl""’Bm be mutually orthogonal non-zero vectors

in Vn : let Am+1 be a vector ngt in L(Bl,...,Bm). Given scalars

cl,...,cm r  let

Bm+1 = Am+1 + clB1 + ... F cmBm .

Show tha§ Bp+y 1 different from 0 and that L(Bl,...,Bm, m+1)
L(Bl""’ L m+1)” Then show that the c; may be so chosen that Bm+1 is

orthogonal to each of ByeotyBpy .
Step 2. Show that if W 1is a subspace of v, of positive dimension,
then W has a basis consisting of vectors that are mutually orthogonal.

[Hint: Proceed by induction on the dimension of W.]

Step 3. Prove the theorem.

Gauss—Jordan elimination

.

If W is a subspace of Vn’ specified by giving a spanning set for
W, we have at present no constructive process for determining the dimension
of W nor of finding a basis for W, although we know these exist. There

is a simple procedure for carrying out this process; we describe it now.

Definition. The rectangular array of numbers

11 %12 e+ 2y,
a a PP a
A = 21 22 2n
| %kl k2 e ®kn |
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is called a matrix of size k by n. The number aij is

called the entry of A in the iEﬁ row and jEE column.

Suppose we let Ai be the vector

A = (a,

—e

[

—
~

for i=1,...k. Then Ai is just the ith row of the matrix A. The
subspace of V= spanned by the vectors 'Al,...,Ak is called the row space
of the matrix A.
We: now describe a procedure for determining the dimension of this space.

It involves applying operations to the matrix A, of the following types:
(1) 1Interchange two rows of A.
(2) Replace row i of A by itself plus a scalar multiple of another row,

say row m.

(3) Multiply row i of A by a non-zero scalar.

These operations are called theelcmentary row operations. Their usefulness comes

from the following fact:

Theorem 6. Suppose B is the matrix obtained by applying a sequence
of elementary row operations to A,successively. Then the row spaces of
A and. B are the same.

Proof. It suffices to consider the case where B is obtained by
applying a single row operation to A. Let Al,...,Ak be the rows of A,

and let Bl""'B be the rows of B.

k
If the operation is of type (1), these two sets of vectors are the

same (only their order is changed), so the spaces they span are the same.

If the operation is of type (2), then

B, =cA, and B, = A, for j #1i.

i i j 3
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Clearly, any linear combination of Bl""’Bk can be written as a linear

combination of Ai""'Ak' Because c # 0, the converse is also true.

Finally, suppose the operation is of type (2). Then

Bi = Ai + dAm ard Bj = Aj “for j £ i.

Again, any linear combination of Bl""’B can be written as a linear

k

combination of Al""’Ak' Because

i dAm = Bi - dBm ’

A.=Bj f()r j?{i’

and

the converse is also true. []
The Gauss-Jordan procedure consists of applying elementary row operations
~to the matrix A until it is brought into a form where the dimension of its

row space is obvious. It is the following:

Gauss—Jordan elimination. Examine the first column of your matrix.

(I) If this column consists entirely of zeros, nothing needs to be
done. Restrict your attention now to the matrix obtained by deleting the
first column, and begin again.

. (II} If this column has a non-zero entry, exchange rows if necessary
to bring it to the top row. Then add multiplesof the top row to the lower
rows so as to make all remaining entries in the first column into zeros.

Restrict your attention now to the matrix obtained by deleting the first

colum and first row, and begin again.

The procedure stops when the matrix remaining has only one row.

Let us illustrate the pfocedure with an example.



2 5 4 -10 4

~

Sclution. First step. Alternative (I) applies. Exchange rows (1)
and (2), obtainihg

— -

1 -2 0 9 -1

Replace row (3) by row (3) + row (l); then replace (4) by (4) + 2 times (1).

(@]
—
NAN
[
N

0O |1 4

@
[\

‘—

Second step. Restrict attention to the matrix in the box. (II) applies.

Replace row (4) by row (4) - row (2) , oktaining

Third step. Restrict attention to the matrix in the box. (I) applies,

so nothing'needs be done. One obtains the matrix



Fourth step. Restrict attention to the matrix in the box. (II) applies.

Replace row (4) by row (4) - %—row (3) , obtaining

2 0 9 -1]
ol@® 4 1 2
B = ,
' o 0 o0 0
0o 0 0 o0 o]
.

The procedure is now finished. The matrix B we end up with is in what is called
echelon or "stair-step"form. The entries beneath the steps are zero. And

the entries -1, 1, and 3 that appear at the "inside corners" of the stairsteps

are non-zero. These entries that appear at the "inside corners" of‘the stairsteps
are often called the pivots in the echelon form.

You can check readily that the non-zero rows of the matrix B are
independent. (We shall prove this fact later.) It follows that thevnon—zero rows
of the matrix B form a basis for the row space of B, and hence a basis for
the row space of the original matrix A. Thus this row space has dimension 3.

The same result holds in general. If by elementary operations you
reduce the matrix A to the echelon form B, then the non-zero rows are B
are independent, so they form a basis for the row space of B, and hence a

bzsis for the row space of A.

Now we discuss how one can continue to apply elementary operations to

reduce the matrix B to an even nicer form. The procedure is this:
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Begin by considering the last non-zero row. By adding multiples of this row
to each row above it, one can bring the matrix to the form where each entry 1ying
above the pivot in this row is zero. Then continue the process, Wofking now
with the next-to-last non-zero row. Because all the entries above the last
pivot are already zero, they remain zero as you add multiples of the next-to-
last non-zero row to the rows above it. Similarly one continues. Eventually
the matrix reaches the form where all the entries that are directly above the
pivots are zero. (Note that the stairsteps do not change during this process,
nor do the pivots themselves.) | |

Applying this procedure in the example considered earlier, one brings

the matrix B into the form

o 0 013 O

0 o0 o o0 O
Note that up to this point in the reduction process , we have used only
elementary row operations of types (1) and (2). It has not been necessary to
multiply a row by a non-zero scalar. This fact will Be important later on.
We are not yet finished. The final step is to multiply each non-zero
row by an appropriate non-zero scalar, chosen so as to make thé pivot entry

into 1. This we can do, because the pivots are non-zero. At the end of

this process, the matrix is in what is called reduced echelon form. g

The reduced echelon form of the matrix C above is the matrix

1 0 -8 0 -3

oj1 4 0 2
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As we have indicated, the importance of this process comes from the

following theorem:

Theorem 7. Let A be a matrix; let W be its row space. Suppose
we transform A by elementary row operations into the -echelon matrix B,
or into the reduced echelon matrix D. Then the non-zero rows of B
are a basis for W, ard sb are the non-zero rows of D.

Proof. The rows of B span W, as we noted before; and so do the
rows of D. It is easy to see that no non-trivial linear combination of the
non-zero rows of D equals the zero vector , because each of these rows
has an entry of 1 1in a position where the others all have entries of 0.
Thus the dimension of W equals the number r of non-zero fows of D.

This is the same as the number of non-zero rows of B . If the rows of B
were not independent, then one would equal a linear combination of the others.
This would imply that the row space of B could be spanned by fewer than

r rows, which would imply that its dimension is less than r.

Exercises

1. Find bases for the row spaces of the following matrices:

1 S
A= (2 -1 4 D =
- l 1 =1
3 2 1]
B= 1|5 3
1 1 _i 1 -2 1 2
- = E = 2 3 -1 =5
B T4 =1 1 -1
c=g§§ s -3 2 1
_7 4 5
2. Reduce the matrices in Exercise 1 to reduced echelon form.

ot vppat anaireie fot faToyiise)



*3. Prove the following:

Theorem. The reduced echelon form of a matrix is unique.
Proof. Let D and D' be two reduced echelon matrices, whose

rows span the same subspgce W of Vn' We show that D = D'.

Let Rl""’Rk be the non-zero rows of D ; and suppose that the
pivots (first non-zero entries) in these rows occur in columns jl,...,jk '
respectively.

(a) Show that the pivots of D' occur in the columns jl""’jk'
(Hint: Tet R be a row of D'; suppose its pivot occurs in column p. We
have R = clRl ool + ckRk for some scalars cy - (Why?) Show that

c; = 0 if ji'< p. Derive a contradiction if p is not equal to any of

jllo--’jk o]
(b) If R 1is a row of D' whose pivot occurs in columr.. jm » show

that R = Rm' [Hint: We have R = clR1 + .. + ckRk for some scalars ci

Show that c; = 0 for i # m, and Cp = 1.]

A24
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Parametric equations of lines and planes in Vn

Given n-tuples P and A, with A # 0, the line

through P determined by A 1is defined to be the set of all

points X such that

(*) X =P + tA
for some scalar t. It is denoted by
L(P;A). The vector A 1is called a direction vector for the

line. Note that if P =0, then L 1is simply the l-dimensional subspace

of Vn spanned by A.

The equation (*) is often called a parametric equation

for the line, and t 1is called the parameter in this equation.

As t ranges over all real numbers, the corresponding point X

0, then X = P; when

ranges over all points of the line L. When ¢t
t =1, then X=P +A; when t=12%, then X =P + %A; and so on. All
these are points of L.

Occasionally, one writesthe vector equation out in scalar

form as follows:

xl = pl + tal
x2 = p2 + ta2

X, =p, * ta
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where P = (pl,...,pn) and A = (al,...,an). These are called

the scalar parametric equations for the line.

Of course, there is no uniqueness here; a given line can
be represented by many different parametric equations. The

following theorem makes this result precise:

Theorem 8. The lines L(P;A) and L(Q;B) are egual‘if

and only if they have a point in common and A is parallel to B.

Proof. If L(P;A) = L(Q;B), then the lines obviously have a point
in common. Since P and P + A lie on the first line they also lie on

the second line, so that

P=Q+ tlB and P +A=0Q + tzB

for distinct scalars t1 and tz. ‘Subtracting, we have A = (tz'tl)B’ so

A 1is parallel to B.
Conversely, suppose the lines intersect in a point R, and suppose

A and B are parallel. We are given that -

P + tlA = R = Q + tZB

for some scalars tl ard t2,

solve these equations for P in terms of Q and B:

and that A =cB for some c # 0. We can

P = Q+ tZB - tlA = Q + (tz-th}B.

Now, given any point X = P + tA of the line L(P;A), we can write

X = P+ tA Q + (tz—t c)B + tcB.

1
Thus X belonés to the line L(Q;B).

Thus every point of L(P;A) belongs to L(Q;B). The
symmetry of the argument shows that the reverse holds as well. O

Definition. It follows from the preceding theorem that

given a line, its direction vector is uniquely determined up to

4 non-zero scalar multiple. We define two lines to be parallel
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if their direction vectors are parallel.

Corollary 9. Distinct parallel lines cannot intersect,
Corollary 10. . Given a line L and a point Q, there is

exactly one line containing Q that is parallel to L.

Proof. Suppose L 1is the line L(P;A). Then the line
L(Q;A) contains Q and is parallel to L. By Theorem 8, any
other line containing Q and parallel to L 1is equal to this
one. 0O

Theorem 1l. Given two distinct points P and Q,

there is exactly one line containing them.

Proof. Let A =Q - P; then A # 0. The line L(P;A)
contains both P (since P =P + 0A) and Q (since
Q=P + lA).

Now suppose L(R;B) is some other line containing P

and Q. Then

v
|

= R + t.B,

©
I

2

for,distinct scalars tl and t2. It follows that
Q - P = (tz"tl)B,

so that the vector A = Q - P 1is parallel to B. It follows

from Theorem'a‘that

L(R;B) = L(P;A). O

Now we' study planes in U~



Definition. If p jsg a point of V, and if A ang

B are independent vectors of Vn’ we define the plane through

P determined by A and B to be the set of all points X of

the form
(*) X =P + sA + tB,

where s and t run through all real numbers. We denote this
plane by M(P;A,B).
The equation (*) isg called a parametric équation for the

plane, and s ang t are called the parameters in this egua-

tion. It may be written out as n scalar equations, if desired.

When s = ¢ 0, then X = p; when s =1 and t = O, then X =P + A; when

1]

]
1]

S =0 and ¢t l, then X =7p + B; and so on.

Ncte that if p =0, then this plane is just the 2-dimensional subspace

of Vn spanned: by A and B.

Just as for lines, a plane has many different parametric
representations. More Precisely, one has the following theorem:

Theorem 12, The planes M(P;A,B) and M(Q;C,D) are

eéqual if and only if they have 2 point in common and the linear

span of A and B equals the linear span of C and D.

Proof. 1If the planes are equal, they obviously have a
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point in common. Furthermore, since P and P + A ard P + B all lie

on the first plane, they lie on the second plane as well. Then

P=Q + s,C + t,D,
P+ é =Q+ s,C + tzD,
P+B=0Q + S54C + t4D,

are some scalars s, ard ti' Subtracting, we see that

A = (Sz-sl)C + (tz-t )D,

1
B f (33-sl)C + (t3—tl)D.

Thus A and B 1lie in the linear span of C and D. Symmetry shows that

C and D 1lie in the linear span of A and B as well. Thus these linear

spans are the same.

Conversely, suppose that the planes intersect in a point

R and that L (A,B) = L(C,D). Then

P+ s A+t B = R = Q + s

1 1 C+¢t,D

2 2
for some scalars s; anrd ti' We can solve this equation for P as follows:
P = Q + (linear combination of A,B,C,D).

Then if X 1is any point of the first plane M(P;A,B), we have

X

P + sA + tB for some scalars s and t,

Q + (linear combination of A,B,C,D) + sA + tB

Q + (linear combination of C,D),
sine A and B belong to L(c,D),
Thus X belongs to M(Q;C,D).
Symmetry of the argument shows that every point of
M(Q;C,D) belongs to M(P;A,B) as well. O

Definition. Given a plane M = M(P;A,B), the vectors

A and B are not unigquely determined by M, but their linear
span is. We say the planes M(P;A,B) and M(Q;C,D) are

parallel if L(aA,B) = L(C,D).
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Corollary 13. Two distinct parallel planes cannot intersect.

Corollary 14. Given a plane M and a point Q, there ié

exactly one plane.containing Q that is parallel to M.

Proof. Suppose M = M(P;A,B). Then M(Q;A,B) is a

plane that contains Q and is parallel to M. By Theorem 12
any other plane containing Q parallel to M is equal to

this one. O

Definition. We say three points P,Q,R are collinear if they lie

on a line.

Lemma 15. The points P,Q,R are collinear if and only if the vectors
Q-P and R-P are dependent (i.e., parallel).

Proof. The line L(P; Q-P) 1is the one containing P and Q, anq
the lip=: L(P;R-P) 1is the one containing P and R. If Q-P and R-P
are parallel, these lines are the séme, by Theorem &, so P, Q,and R
. are collinear. Conversely, if P, Q, and R are collinear, these lines must
be the same, so that Q-P and 'R-P must be parallel. 3

Theorem 16 . Given three non-collinear points P, Q, R,

there is exactly one plane containing them.

Proof. Let A =Q-P and B =R - P; then
A and B are independent. The plane M(P; A,B) ccntains P and P +A =Q
and P+ B =R. |

Now suppose M(S;C,D) 1is another plane containing P,

Q,' and R. Then

g
]

S + s,C + t,D

1 1

R =28 + s3C + t3D



for some scalars s; and t, . Subtracting, we see that the vectors
Q-P=A and R - P =B belong to the linear span of ¢ and D. By

symmetry, C and D belong to the linear span of A and B. Then Theorem

12 implies that these two planes are equal.

Exercises

1. We say the line L is parallel to the plane
M = M(P;A,B) 1if the direction vector of L belongs to L(A,B).
Show that if L 1is parallel to M and intersects M, then L
is contained in M.

- 2. Show that two vectors Al and A, in v, are
linearly dependent if and only if they lie on a line through
the origin.

3. Show that three vectors Al’ AZ, A3 in Vn are
linearly dependent if and only if they lie on some plane through
the origin.

4. Let P=(1,0,-1), Q= (0,0,0), R = (-2,5,0).
Let A=(1,-1,0), B =(2,0,1).
(2) Find parametric equations for the line through P and Q, and
for the line through R with direction vector A. Do these lines intersect?
(k) Find parametric equations for the plane through P, Q, and

R, and for the plane through P determined by A and B.

5. Let L be the line in V. through the points P = (1,0,2) and

= (-1,1,3). Let L' be the line through Q parallel to the vector

O
|

= (3,1,-1). Find parametric equations for the line that intersects both L

o
|

and L' and is orthogonal to both of them.



Parametric equations for K-planes in V-

Following the pattefn for lines and planes, one can define, more
generally, a k-plane in v, as follows:

Definition. Given a point P of v, and a set

Al""’Ak of k independent vectors in Vn' we define the

k-plane through P determined by Ajre.esAL  to be the set of

all vectors X of the form

K =P + tjA) + «o0 + £ A,

for some scalars ti' We denote this set of points by
M(P;Al,...’Ak).
Said differently, X 1is in the k-plane M(P;Al,...,Ak)

if and only if X - P 1is in the linear span of Al""'Ak"’

Note that if P = 0, then this k-plane is just the k- dimensional
 linear subspace of V., spanned by A;,.../A.

Just as with the case of lines (l-planes) and planes
(2-planes), one has the following results:

Theorem 17. Let M; = M(P;A;,...,A) and M, = M(Q;B;,...,B)
be two k-planes in Vn' Then M1 = MZ if and only if they have a point in
common and the linear span of Al""’Ak equals the linear span of Bl""’Bk'

Definition. We say that the k-planes M, and M, of this theorem

1 2
are parallel if the linear span of Al""’Ak equals the linear span of

lloo-lB,K-

Theorem jg . Given a k-plane M in V, and a point

Q, there is exactly one k-plane in V, containing Q and

parallel to M.

Lemma 1&. Given points PO,..,Pk in Vo they are contained in

a plane of dimension less than k if and only if the vectors
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Pl - PO,..., Pk- PO are dependent.

or "Pk in Vn'
If these points-do not lie in any plane of dimension less than k, tten

there is exactly onek-plane containing them; it is the k-plane

Theorem 20. Given k+1 distinct points P

M(po; PI—POI...'PK—PO).

More generally, we make the following definition:

Definition. If M1 = M(P;Al,...,Ak) is a k-plane, and
M, = M(Q;Bl,...,Bm) is an m-plane, in Vn » and if k< m, we say
Ml is parallel to M2 if the linear span of Al""’Ak is contained

in the linear span of B,,...,B

1 m °

Exercises

1. Prove Theorems 17 and 18.

2. Prove Theorems 19 and 20.

3. Given the line L = L(Q;A) in V3 , where A = (1,-1,2).
Find parametric equations for a 2_plane containing the point P = (1,1,1)
that is parallel to L. Is it unique? Can you find such a plane containing
both the point P and the point Q = (-1,0,2)?

4. Given the 2-plane M, in V4 coentaining the points P = (1,-1,2,-1)
and Q = (0,1,1,0)and R = (1,1,0,3).Find parametric equations for a 3-plane
in V4 that contains the point S = (1,1,1,1) and is parallel to Ml'
Is it unique? C&n you find such a 3-plane thatcontains both S and the

point T = (0,1,0,2)7?
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Matrices
[}

We have already defined what we mean by a matrix. In this section,

we introduce algebraic operations into the set of matrices.

Definition. If A and B are two matrices of the same size, say
kK by n, wedefine A+ B tobethe k by n matrix obtained by adding
the corresponding entries of A and B, and we define cA to be the matrix
obtained from A by multiplying each entry of A by c¢. That is, if aij
and bij are the entries of A and B, respectively, in row i and column

j, then the entries of A+ B ard of cA inrow i and column j are

aij + bij and caij ,

respectively.

Notg that for fixed k and n , the set of all k by n matrices
satisfies all the properties of a linear space. This fact is hardly
surprising, for a k by n matrix is very much like a k°n  tuple;
that only difference is that the components are written in a rectangular array

instead of a linear array.

Unlike tuples, however, matrices have a further operation, a product

operation. It is defined as follows:

Definition. If A isa k by n matrix, and B is an n by
p matrix, we define the product D =A«B of A and B to be the matrix
of size k by p whose entry dij in row i and columm j 1is given by

the formula

Here i=1,...,k and j=1,...,pP. L
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The entry dij is computed, roﬁghly speaking, by tak-
ing the "dot product" of the ifl row of A with the jEE

column of B. Schematically,

S /J'\ ‘F

— —] [ ]
' T
R | it | | ot X :l
. —J — “i“
Mi
% cslim,

A B Myw"’ ;

This definition seems rather strange, but it is in fact extremely
useful. Motivation will come later! One important justification for this
definition is the fact that this product operation satisfies some of the familar

"laws of algebra" :

Theorem 1. Matrix multiplication has the following properties: Let

A, B, C, D be matrices.

(1) (Distributivity) If A-(B + C) is defined, then

A-(B+C) = A‘B + A-C.

Similarly; if (B + C)-D is defined, then

(B+C)'D = B*D + C-*D.

(2) (Homogeneity) If A*B 1is defined, then

(cA)*B = c(A*B) = A +<(cB)

(3) (AssociatiVity) If A'B and B*C aredefined, then

A+(B*C) = (AeB).C.



B3

(4) (Existence of identities) Fcr each m, there is an m by m

_matrix Im such that for matrices A and B, we have

I A = A and B*I = B
il m

.whenever these products are defined.

Proof. We verify the first distributivity formula. In order for
_B + C to be defined, B and C must have the same size, say n by p.
Then in order for A« (B + C) to be defined, A must have n cclums. Suppose
A has size kX by n. Then A-B and A-C aredefinedand have size k
ky p; thus their sum is also defined. The distributivity formula now follows

from the equation
n n n
b

o~
[\
+
Q
il

) a, C ..
sj is”sj

. (b .4c .
is Pss*esy) = 1 y Cis s=1

s=
The other distributivity formula and the homogeneity formula are proved similarly.
We leave them as exercises.

Now let us verify associativity.

If A is k by n and B 1is n by p, then
A+ B is k by p. The product (A*B) * C is thus defined

providéd C has size p by g. The product A + (B*C) is

defined in precisely the same circumstances. Proof of equality
is an exercise in summation symbols: The entry in row i and

column j of (A*B) *« C is

P n
t=1'(is=l a; POy

"and the corresponding entry of A - (B+C) |is

P
Z ais(z bstctj)'
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These two expressions are equal.

Finally, we define matrices Im that act as identity elements.
Given m, let Im be the m by m matrix whose generai entry is J;j’
where é;j =1 if i =3 and J;j =0 if i # j. The matrix I is a square
matrix that has 1's down the "main diagonal" and 0's elsewhere. For instance,

I4 is the matrix

©O O O
o O = O
o +~H O O
= O O ©

Now the product Inf A is defined in the case where A has m rows. In

this case, the general entry of the product C = Inf A is given by the equation

m é‘
— L] a [}
Cij = § s=1 1s sj

Let i and j be fixed. Then as s ranges from 1 to m, all but one
of the terms of this summation vanish. The-only one that does not vanish

is the one for which s = i, and in that case 5&5 = 1. We conclude that

- 04404 Tl Ok OF @

cij U .

An entirely similar proof shows that B:* Im =B if B has m columns. []

Remark. If A *« B is defined} then B * A need not be
defined. And even if it is defined, the two products need not

be equal. For example,

1 27 [1 -17] 35

1. 3 -1 -3

—d

—1 -1 1 27 1 3]
1. 34 Lo -1 1 -1 .

' and
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Remark. A natural question to ask at this point céncerns the existence
of multiplicative inverses in the set of matrices. We shall study the answer

to this question in a later section.

Exercises

1. Verify the other half of distribuﬁivity.

2. Verify homogeneity of matrix multiplication.

3. Show the identity element is unique. [Hint: If I& and I&
are two possible choices for the identity element of size m by m, compute
Inin el

4. Find a non-zero 2 by 2 matrix A such that A¢A 1is the zero

matrix. Conclude that there is no matrix B such that B+A = IZ'

5. Consider the set of m by m matrices; it is closed under addition
and multiplication. Which of the field axioms (the algebraic axioms that the
real numbers satisfy) hold for this set? (Such an algebraic object is called

in modern algebra a "ring with identity.")
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Systems of linear equations

Given numbers aij for i=1,...,k and j=1,...,n,

and given numbers CpreessC » We wish to study the following, which is called

a system of k linear equations in n unknowns:

X = 2cC

1171 1272 ln’'n 1
alel + a22x2 + ... + aZan = c2

(*)
aklxl + akzx2 + ... + aknxn = ck.

A solution of this system is a vector X = (Xl""’xn) that satisfies each

equation. The solution set of the system consists of all such vectors; it is

a subset of Vn .

We wish to determine whether this systemhas a solution, and if so, what
the nature of the general solution is. Note that we are not assuming anything
about the relative size of k and n; théy may be equal, or one may be larger
than the other.

Matrix notation is convenient for dealing with this systemof equations.
Let A denote the k by n matrix whose entry in rcw i ard column.j is

aij‘ Iet X and C denote the matrices

el
—
9]

Q
"
® s e

ard

M oeew
0
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These are matrices with only one column; accordingly, they are called column

matrices . The system of equations (*) can now be written in matrix form as.

AX = C.
A solution of this matrix equation is now, strictly speaking, a column matrix

rather than an n-tuple. However, one has a natural correspondence

X

1
(xl,...,xn) —_—

Moeee

n

between n-tuples and colurm matrices of size n by 1. It is a one-to-one
cérrespondence, and even the vector space operations correspond. .What this means is
that we can identify Vn with the space of all n by 1 matrices if we wish;
all this amounts to is a change of notation.

Representing elements of Vn as column matrices is so convenient that
we will adopt it as a convention throqghout this section, whenever we wish.

e ———————

Example 1. Consider the system

2x +y +z =1
X -y = 2
3x +z=0 .

[Here we use x, y, z for the unknowns instead of xl, Xy
X3r for convenience.] This system has no solution, since
the sum of the first two equations contradicts the third

equation.
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Example 2. Consider the system

2x + y +z =1
X -y = 2

3x + 2z = 3

‘This system has a solution; in fact, it has more than one solution. In

solving this sytem, we can ignore the third equation, since it is the sum of the

first two. Then we can assign a value to y arbitrarily, say y = t, and solve

the first two equations for x and z. We obtain the result
X=2+y=2+t

y ==t

z=1-28x-y=1=2(2+t) - £t = =3 = 3t,

The solution set consists of all matrices of the form

X 2+t
X =]y = t .
2 -3-3t

Shifting back to tuple notation, we can say that the solution set consists of

all vectors X such that

X = (X,Y,Z) = (2+tl tl —3—3t)
or

X = (2’0'—3) + t(1,1[‘3) .

This expression shows that the solution set is a line in V and in "solving"

3!

the system, we have written the equation of this line in parametric form.

Now we tackle the general problem. Wé shall prove the following
result:

Suppose one is given a system of k 1inear‘equations in n unknowns.
Then the solution set is either (1) empty, or (2) it consists of a single point,
or (3) it consists of the points of an m-plane in Vv, + for some m>0. |

In case (1), we say the system is inconsistent, meaning that it has no solution.
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In case (2), the solution is unique. And in case (3), the system has infinitely
many solutions.
We shall apply Gauss-Jordan eliminatioh to pfove these facts. The
crucial result we shall need is stated in the following theorem:
Theorem. 2. Consider the system of equations A*X =C, where A is
a k by n matrixand C isa k by 1 matrix. Let B be the matrix obtained by
applying an elementary row operation to A, and let C' be the matrix obtained
by applying the same elementary row operation to C. Then the solution set‘
of the system B*X = C' 1is the same as the solutionset of the system A°*X = C.
Proof. Exchanging rows i and j of both matrices has the effect of
simply exchanging equations i and 'j of the system. Replacing row i by itself

th

plus c times row j has the effect of replacing the i equation by itself

plus c¢ times the jth equation. And multiplying rcw i by a non-zero scalar

th equation by d. Thus each

d has the effect of multiplying both sides of the i
solution of the first system is also a solution of the second system.

Now we recall that the elementary operations are invertible.
Thus the system A*X = C can be obtained by applying an elementary operation to
both sides of the equation B*X = C'. It follows that every solution of the

second system is a solution of the first systém.

Thus the two solution sets are identical. []

We consider first the case of a homogeneous system of equations, that is,

a system whose matrix equation has the form
A*'X = 0.
In this case, the syétem obviously has at least one solution, namely the trivial
solution X = 0. Furthermore, we know that the set of solutions is a
linear subspace of Vn , that is, an m-plane through the origin for some m.

We wish to determine the dimension of this solution space, and to find a basis

for it.
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Definition. ILet A be a matrix of size k by n. Let W be the row
space of A; let r be the dimension of W. Then r equals the number of non-zero
rows in the echelon form of A. It follows at once that r < k. It is also
true that r £ n, because W is a subspace of V, - The number r 1is called

the rank of A (or sometimes the row rank of A).

Theorem 3. Let. A be a matrix of size k by n. Let r be the rank
of A. Then the solution space of the system of equations A-X = 0 is
a subspace of Vn of dimension n - r.

Proof. The preceding theorem tells us that we can apply elementary
operations to both the matrices A and 0 without changing the solution set.
Applying elementary operations to 0 leaves it unchanged, of course.

So let us apply elementary operations to A so as to bring A into
reduced echelon form D, and consider the system D*X =0 . The number of
non-zero rows of D equals the dimension of the row space of A, which is r.
Now for a zero row of D, the corresponding equation is automatically satisfied, no
matter what X we choose. Only the first r equations are relevant.

Suppose that the pivots of D appear in columns jl,...,jr. Let J
denote the set of indices Ejl,...,j£E and let K consist of the remaining indices
from the set {},...,ﬁ}. Each unknown Xj for which j 1is in J appears with a
non-zero coefficient in only_ggg of the equations of the system D-X = Q.
Therefore, we can "solve" for each of these unknowns in terms of the remaining
unknowns X o for k in K. Substituting these expressiohs for le, coey xjr
into the n-tuple X = (xl,...,xn), we see that the general solution of the
system can be written as a vector of which each component is a linear combination
of the X .for k in K. (Of course, if k 1is in K{ then the linear

combination that appears in the kth component consists merely of the single

term X 1)
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Let us pause to consider an example.
Example3. ILet A be the 4 by 5 matrix given on p.A20. The
equation A°X = 0 represents a system of 4 equations in 5 unknowns. Now A

reduces by row operations to the reduced echelon matrix

1 0-8 0 -3

Here the pivots appear. in columns 1,2 and 4; thus J is the set 21;2,4} and
K 1is the set {3,5} . The unknowns Xyr Xy and Xy each appear in only

one equation of the system. We solve for theese unknowns in terms of the others

as follows: =
x1 8x3 + 3x5
X = -4x3 - 2x5
X4 = 00

The general solution can thus be written (using tuple notation for convenience)

X = (BX ’ —4X3, X3, 0, 0) + (3X5[ —ZXS’ O' 0, XS )I Or
X = X3(8,-4,1’O,O) + X5(3,—2,O,O,1)

The solution space is thus spanned by two vectors (8,-4,1,0,0) and (3,-2,0,0,1).

S,

The same procedure we followed in this example can be followed in
generai. Once we write X as a vectpr of which each component is a linear combination
of the Xy v then we can write it as a sum of vectors each of which involves:
only one of the unknowns X + and then finally as a linear combination, with

coefficients xk, of vectors in Vn . There are of course n - r of the
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unknowns Xk" and hence n - r of these vectors.

It follows that the solution space of the system has a spanning set
consisting of n - r vectors. We now show that these vectors are independent;
then the theorem is proved. To verify independence, it suffices to show that if we
take the vector X, which equals a linear combination with coefficents X
of these vectors, then X = 0 if and only if each % (for in K)
equals 0. This is easy. Consider the first expression for X that we wrote down,
where each component of X is a linear combination of the unknowns X
The kth component of X is simply X It follows that the equation X = 0
"implies in particular that for each k in K, we have X = 0.

For example, in the example we just considered, we see that the equation
X =0 implies that Xy = 0 and Xg = 0, because Xq is the third component

of X and xg is the fifth component of X. [

This proof is especially interesting because it not only gives us the

dimension of the solution space of the system, but it also gives us a method

for finding a basis for this solution space, in practice. All that is involved is

Gauss—Jordan elimination. |
Corollary 4. Let A bea k by n matrix. If the rows of A are

independent, then the solution space of the system A*X = 0 has dimension n - k. []

- Now we consider the case of a general system of linear equations, of the
form A*X = C . For the moment, we assume that the system has at least one

solution, and we determine what the general solution looks like in this case.

Theorem 5. Iet A bea kby n matrix. Let r equal the rank of A.
If the system' A*X = C has a solution, then the solution set is a plane in

Vn of dimension m=n - r.
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Proof. Let X =P bhe a'solution of the system. Then A°‘P =C .
If X is a column matrix such that A‘X =C, then A*(X-P) =0, and
ccnversely. The solution space of the system A°X =0 is a subspace of Vn
of dimension m =n - r; let Al""fAm be a basis for it. Then X is a solution
of the system A*X = C if and only if X - P 1is a linear combination of the

vectors Ai' that is, if and only if

X = P+ t,A, + ... + tA
11 ‘mm

for some scalars ti. Thus the solution set is an m-plane in Vn 4

New let us try to determine when the system A*X = C has a solution.
One has the following general result:

Theorem 6. ILet A bea k by n matrix. ILet r equal the rank
of A.

(a) If r <k, then there exist vectors C in Vk such that the

system A*X = C has no solution.

(b) If r =Xk, then the system A'X = C always has a solution.

Proof. We consider the system A*X = C and apply elementary row
operations to both A. and C until we have brought A into ecﬁelon form
B. (For the moment, we need not go all the way to reduced echelon form.) Let
C' be the colum matrix obtained by applying these same row operations to C.
Consider the system B*X = C'. |

Consider first the case r < k. 1In this case, the last row at least of

B 1is zero. The equation corresponding to this row has the form
. - 1)
Oxl + el + Ox.n = Cp s

where c& is the entry of C' in row k. If cﬁ is not zero, there are no

values of XyreeerX, satisfying this equation, so the system has no solution.

\
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Let us choose C' tobea k by 1 mstrix whose last entry is non-zero.

Then apply the same elementafy operations as before, in reverse order, to

both B and C'. These operations transform B back to A; whén we apply them
to C', the result is a matrix C such that the system A*X = C has no
solution.

Now in the case r =k, the echelon matrix B has no zero rows, so
the difficulty that occurred in the preceding paragraph does not arise. We shall
show that in this case the system has a solution.

More generally, we shall consider the following two cases at the same
time: Either (1) B has no zero rows, or (2) whenever the ithrow of B is zero,
then the corresponding entry ci of C' 1is zero. We show that in either of
these cases, the system has a solution.

Let us consider the system B*X = C' and apply further operations to
both B and C', so as to reduce B to reduced echelon form D. Let C"
be the matrix obtained by applying these same operations to C'. Note that the
zero rows of B, and the corresponding entries of C', are not affected by these
operations, since reducing B to reduced echelon form requires us to work only
with the non-zero rows.

Consider the resulting system of equations D°*X = C". We now proceed as
in the proof of Theorem 3. Let J be the set of column indices in which the
pivots of D appear, and let K be the remaining indices. Since each X: 1
for j in’ J, appears in only one equation of the system, we can solve for each
Xj in terms of the numbers c{ and the unknowns X - We can now assign
values arbitrarily to the X and thus obtain a particular solution of the

system. The theorem follows. [:]
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The procedure just described actually does much more than was necessary
to prové the théorem. It tells us how to determine, in a particular case, whether
or not there is a solution; and it tells us,when there is one, how to express the
solution set in parametric form as an m—plane'in Vn

Censider the following example,

Example 4. Consider once again the reduced echelon matrix of Example 3:

r-l 0-8 0 -3

The system

has no solution because the last equation of the system is
Ox1 + sz + Ox3 + Ox4-+ Ox5 =1.

On the other hand, the system

DX =

OJwH

does have a solution. Following the procedure described in the preceding proof,

we solve for the unknowns x], X2’ and x4 as follows:

Xl = =1+ 8x3 + 3x5
x2 = 3 - 4x3 - 2x5
x4 = 7

The general solution is thus the 2-plane in V5 specified by the parametric equation

X = (-1,3,0,7,0) + X3(8,_4(1,O'0) + X5(3[—2'0’O,l)o
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Remark. Solving the system A*X = C in practice involves applying
elementary operations to A , and applying these same operations to C.
A convenient way to perform these calculations is to form a new matrix from
A Dby adjoining C as an additional column. This matrix is often called the

augmented matrix of the system. Then one applies the elementary operations to this

matrix, thus dealing with both A and C at the same time. This procedure

is described in (6.18 of vol. I of Apostol.

Exercises

1. Let A bea k by n matrix. (a) If k<« n, show that the system
A*X =0 has a solution different from O0.(Is this result familiar?) What'
can you say about the dimension of the solution space? (b) If k> n, show that
there arevalues of C. such that the system A°*X = C has no solution.

2. Ccnsider the matrix A of p. A23. (a) Find the general solution
of the system A*X = 0. (b) Does the system A*X = C have a solution for
arbitrary C?

3. Repeat Exercise 2 for the matrices C, D, and E of p. A23.

4. Let B be the matrix of p. A23. (a) Find the general solution of
the system 1

BX = 11.

1
(b) Find conditions on a,b, and ¢ that are necessary and sufficient for the
system B:X = C to have a solution, where C = [;] . [Hint: What happens to
C when you reduce B to echelon form?] ©

5. Let A be the matrix of p. A20. Find conditions on a,b,c, and 4

that are necessary and sufficient for the system A*X = C to have a -solution,

wher e

‘nnocw
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let A bea % by n matrix; let r be the rank of A.

Let R be the set of all those vectors C of V

K fcr which the system

AX = ¢C

has a solution. (That is, R is the set of all vectors of the form
A.X , as X ranges over V_ .)

: n
(a) Show that R 1is a subspace of V,_ .

(k) Show that R has dimension r. nggg: Let W be the solution
space of the system A.X =0 . Then W has dimension m=n - r. C oose
a basis Al,..},Am' for W. By adjoining vectors one at a time, extend
this to a basis Al""’Am'Bl""'Br for all of v, o Show the vectors
A-B; » ..., A:B. span R; this follows from the fact that A-A; ;,g for
all i. Show these vectors are independent.] -

(c) Conclude that if r < k, there are vectors C in Vi such
that the system A.X = C has no solution; while if r = k, this system

‘has a solution for all C. (This provides an alternate proof of Theorem 6.)

(:) Let IA ‘be a bk by n metrix. The colums of A, when looked

at as elements of V, , span a subspace of Vk

space of A . The row space and column space of A are very different,

that is called the column

but it is a totally unexpected fact that they have the same dimension ! Prove

this fact as follows: Let R be the subspace of V,_

6. Show that R is spanned by the vectors A'El""’A'En ; conclude

defined in Exercise

that R equals the column space of A.
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Cartesian equations of k-planes in Vn .

There are two standard ways of specifying a k-plane M in Vn'

One is by an equation in parametric form:
X = P+ tlA1L + oeee F tkAk ’

where Al”"'Ak are independent vectors in Vn' (If trese vectors were
not independent, this equation would still specify an m-plane for some m,
but some work would be required to determine m. We normally require"the
vectors to be independent in the parametric form of the equation of a k-plane.)
Arother way to specify a plane in Vn is as the solution set of a
system of linear equations :
AX =C,
where the rows of A are independent. If A has size k by n, then
the plane in question has dimension n - k. The equation is called a

caretesian form for the equation of a plane. (If the rows of A were not

independent, then the solution set would be either empty , or an m-plane
for some m, but some work would be required to determine m.)

The. process of "solving" the system of equations A'X = C that
we described in the preceding section is an algorithm for passing from a
cartesian equation for M to a parametfic equation for M. Ore can ask
whether there is a process for the reverse, for passing from a parametric
equation for M to a cartesian equation. The answer is "yes," as we
shall see shortly. The other question one might ask is, "Why should one
care?" The answer is that sometimes one form is convenient, and other times
the other form is mére useful. Particularly is this true in the case of

3-dimensional space V3 , as we shall see.
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Definition. Let A Dbe a matrix of size k by n. Let Al" "’Ak
be the rows of A; 1let W be the subspace of Vn they span. Now the vector
X 1is a solution of the system A:X = 0 if and only if X is orthogonal
to each of the vectors Ai . This statement is equivalent to the statement
that X 1is orthogonal to every vector belonging to W. The solution space

of this system is for this reason sometimes called the orthogonal complement .

of W. It is often denoted W& (read "W perp".)

We have the following result:

Theorem 7. If W 1is a subspace of v, of dimension k, then
its orthogonal complement has dimension n - k. Furthermore, W is the
orthogonal complement of W'L; that is, (W'L)“' = W.

Proof. That wl ‘has dimension n - k 1is an immediate consequence of

Theorem 35 for W 1is the row space of a k by n matrix A with independent rows

Ai , Wwhence wi is the solution space of the system A*X = 0.

The space (W'L)‘L has dimension n - (n - k) , by what we just proved.
And it contains each vector A, (since A;’X =0 for each X in W'L.)
Therefore it equals the space spanned by Al""' Ak . g

Theorem 8. Suppose a k-pl‘ane M in Vn is specified by the parametric
equation

X = P+t1A1+...+tkAkf

where the vectors Ai are independent. Let W be the space they span;
and let Bl,'...,Bm be a basis for wk. If B is the matrix with rows
Bl""’Bm , then the equation B- (X‘P) =0 3 or

B-X = B-P,

is a cartesian equation for M.
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Proof. The vector X 1lies in M 1if and only if X - P belongs to
W. This occurs if and oniy if X -P |is orthogonal'to each of the vectors

B, and this occurs if and only if B-(X-P) = 0.0

The preceding proof actually tells us how to find a cartesian equation
for M. One takes the matrix A whose rows are the vectors Ai; one finds
a basis ‘Bl"'

w
the G§§S—Jordan algorithm; and then one writes down the equation B.X = B-P .

.,Bm for the solution space of the system A-X = 0, using

We now turn to the special case of V3, whose model is the familiar
3-dimensional space in which we live. In this space, we have only lines
(l1-planes) and planes (2-planes) to deal with. And we can use either the
parametric or cartesian form for lines and planes, as we prefer. However,
in this situation we tend to prefer:

parametric form for a line, and

cartesian form for a plane.

Let us explain why.

If L is a line given in parametric form X = P + tA, then A
is uniquely determined up to a scalar factor. (The point P is of course
not determined.) The equation itself then exhibits some geometric information
about the line; one can‘for instance tell by inspection whether or not
two lines are parallel.

.On the other hand, if M 1is a plane given in parametric form by the
equation X = P + sA + tB , one_does not have as much geometric information
immediately at hand. However, let us seek = to find a cartesian equation
for this plane. We note. that the orthogonal complement of L(A,B) is

one-dimensional, and is thus spanned by a single non-zero vector
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N = (al, ayr a3) - We call N a normal vector to the plane M ; it is

uniquely determined up to a scalar factor. (In practice, one finds N by
solving the system of equations

A.N =_O_)

BN =0 .)

Then a cartesian equation for M 1is the equation

N'(X"P) = Ou
If P 1is the point (pl, Py p3) of the plane M, this equation
has the form
(*) a;(x; - py) + ay(xy - py) + aj(xy - p3 ) = 0.

We call this the equation of the plane through P = (pl, Py p3) with

normal vector N = (al, ayr ag ).
We have thus proved the first half of the following theorem:
Theorem 9. If M is a 2-plane in V3, then M has a cartesian

equation of the form

a. X, + a X, + a.x = b ,

171 272 373
where N = (al, ays a3) is non-zero. Conversely, any such equation is

the cartesian equation of a plane in V the vector N 1is a normal vector

37
to the plane.
Proof. To prove the converse, we note that this equation is a system

consisting of 1 equation in 3 unknowns, and the matrix A = [a1 a, a3] has

Il

rank 1. Therefore the solution space of the system A.X = [b] is a plane

of dimension 3 -1=2. J

Now we see why the cartesian equation of a plane is useful; it
contins some geometric information about the plane. For instance, one can

tell by inspection whether two planes given by cartesian equations are parallel.
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For they are parallel if and only if their normal vectors are parallel,
and that can be determined by inspection of the two equations.
Similarly, one can tell readily whether the line X =P + tA
is parallel to a plane M; one just checks whether or not A is orthogonal
to the normal vector of M.
Meny theérems of 3-dimensional geometry are now easy to prove.

us consider some examples.

Theorem 10. Three planes in V3 intersect in a single point
if and only if their normal vectors are independent.
Proof. Take a cartesian equation for each plane; collectively,
they form a system A*X = C of three equations in three unknowns.
The rows of A are the normal vectors. The solution space of the system
(which consists of the points common to all three planes) consists of a

a single point if and only if the rows of A are independent. [}

Theorem 11. Two non-parallel planes in V3 intersect in a straight

Proof. Let N]-X'= b, and N,*X = b, be cartesian equations for
the two planes. Their intersection consists of those points X that satisfy
both equations. Since Nl and N2 are not zero and are not parallel, the
matrix having rows N1 and N2 has rank 2. Hence the solution of this
,- 0

Theorem 12. Let L be a line, and M a plane, in V

system of equations is a l-plane in V

3° If L is
parallelto M, then their intersection is either empty or all‘of L. If
L 1is not parallel to M, then their intersection is a single point.
Proof. ILet L have parametric equation X = P + tA; let M have
cartesian equation N.X = b. We wish to determine fcr what values of t
the point X = P + tA 1lies on the plane M; that is, to determine the

solutions of the equation

N.(P + tA) = b.
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Now if L 1is parallel to M, then the vector A 1is perpendicular to

the normal vector N to M; that is, N.A = 0. 1In this case, the equation
Ne(P + tA) = b

holds for all t if it happens that N.P = b, and it holds for no t
if N.P # b. Thus the intersection.of L and M is either all of L, or
it is empty.
On the other hand, if 'L 1is not parallel to M, then N.A # O.
In this case the equation can be solved uniquely for t. Thus the iﬁtersection

of L and M consists of a single point. (3

e

Example 5. Ccnsider the plane M = M(P;A,B) in V where

3 4
P=¢(, -7 0) and A=(1, 1, 1) and B= (-1, 2, 0). To find a normal

vector N = (al, 3y a3) to M, we solve the system

a, +a 0

1 2

—a1 +2a2

+a3

0.

One can use the Gauss—Jordan algorithm, or in this simple case , proceed
almost by inspection. One can for instance set a, = 1. Then the second

equation implies that a; = 2; and then the first equation tells us that

ag = —a1 -2, = -3. The plane thus has cartesian equation
2(xl - 1) + (x2 +7) - 3(x3 -0) = 0,
or
le + x2 - 3x3 =."5b




Exercises

1. The  solution set of the equation

—
(8)}

3xl + 2x2 - X5 =

is a plane in V3; write the equation of this plane in parametric form,

2. Write parametric equations for the line through (1,0,0) that

is perpendicular to the plane X) - Xg = 5.

3. Write a parametric equation for the line through (0,5,-2) that

is parallel to the planes Zx2 = X5 ard 5x1 * X, -7x3 = 4,

4. Show that if P and Q are two points of the plane M, then

the line through P and Q 1is conftained in M.

~

5. Write a parametric equation for the line of intersection of the
planes of Exercise 3.

6. Write a cartesian equation for the plane through P = (-1,0,2)
and Q = (3,1,5) that is parallel tovthe line through R = (1,1,1) with

direction vector A = (1,3,4).
7. Write cartesian equations for the plane M(P;A,B) in V4,
were P = (1, -1, 0, 2) and A=(1, 0, 1, 0) ard B= (2,1, O, 1).

8. Show that every n - 1 plane in Vn is the solution set of

an equation of the form a

; (X1 F o A, = b, where (al,...,an) #0 ;

and conversely.

?. Let M1 and M2 be 2-planes in V4; assume they are not

parallel. What can you say about the intersection of M1 and M2 ?

Give examples to illustrate the possibilities.



B25

The inverse of a matrix

We now consider the problem of the existence of multiplicatiave
inverses for matrices. At this point, we must take the non-commutativity
of matrix multiplication into account.Fcr it is perfectly possible, given
a matrix A, that there exists a matrix B such that A°B equals an
identity matrix, without it following that B.A equals an identity matrix.

Consider the following example:

Example 6. Let A and B be the matrices

1 1 2 0 O
A = B =
0o 1 3 3 -2
-1 1
Then A.B = I2 , but B.A # I3 , as you can check.

Definition. Let A bea k by n matrix. A matrix B of size n

by Kk 1is called an inverse for A 1if both of the following equations hold:

A.-B = I and B.-A = I
K n

We shall prove that if k # n, then it is impossible for both these
equations to hold. Thus only square matrices can have inverses.

We also show that if the matrices are square and one of these equations

holds, then the other equation holds as well!

Theorem 13. ILet A be a matrix of size k by n. Then A has
an inverse if and only if k = n = rank A. If A has an inverse, that

inverse is unique.
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‘Proof. Step 1. If Bisan n by k matrix, we say B 1is a

right inverse for A if A.B = I, « We say B is a left inverse for A if

ORI k&jA&a,‘(ﬁ-ﬂmW.

Iet r Dbe the rank of A. We show that if A "has a right inverse,

then r = k; ard if A has a left inverse, then r = n. [ﬁfhe "only if" part

"of the theorem follows.

First, suppose B 1is a right inverse for A . Then A.B = I, - It
follows that the system of equations A.X = C has a solution for arbitrary
C, for the vector X = B.C 1is one such solution, as you can check.

Theorem 6 then implies that r must equal k.

Second, suppose B is a left inverse for A. Then B-A = In . It
follows that the system of equations A.X = 0 has only the trivial solution,
for the equation A.X =0 implies that B.(A-X) = 0, whence X =0 .
Now the dimension of the solution space of the system A.X =0 is n~r ;

it follows that n - r = 0.

-~

Step 2. Now let A be an n by n matrix of rank n. We show there

is a matrix B such that A.B = In .

Because the rows of A are independent, the system of equations
A.X = C has a solution for arbitrary C. In particular, it has a solution
when C 1is one of the unit coordinate vectors Ei in Vn.' Let us choose

Bi s¢ that

for i=1,...,n. Then if B is the n by n matrix whose successive

columns are Bl""’Bn , the product A.B equals the matrix whose successive

columns are E -+E i that is, A.B = I

l’oc
Step 3. We show that if A and B are n by n matrices and

n '

A.B = In , then B.A = In' ‘ The "if" part of the theorem follows.
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Let us note that if we apply Step 1 to the case of a square mat;ix
of size n by n , it says that if such a matrix has either a right
inverse or a left inverse, then its rank must be n.

Now the equation A.B = In says that A has a right inverse and that
B has a left inverse. Hence both A and B must have rank n. Applying

Step 2 to the matrix B, we see that there is a matrix C such that

B.C = In . Now we compute
“A.(B.C) = (A.B).C ,
A‘In = In-C r
A =

The equation B.C = In now becomes B-A = In , as desired.

Step 4. The computation we just made shows that if a matrix has

an inverse, that inverse is unique. Indeed, we just showed that if

B has an left inverse A and a right inverse C, then A =C.[Q

Let us state the result proved in Step 3 as a separate theorem:

Theorem 14. If A and B are n by n matrices such that

A-B=1I , themn BA=1_ . O

We now have a theoretical criterion for the existence

1

of A”". But how can one find A~l in practice? For

instance, how does one compute B = A~! if A is a given
nonsingular 3 by 3 matrix? By Theorem 14, it will suffice

to find a matrix

by; byy byy
B = |by; by, by,

b3; by, ba;



sucp that A * B = 13. But this problem is just the problem of

solving three systems of lirear equations

P11 1 By2 O] bis] [0
A+ by = {0 and A - byl = 1] anda A . byy| = {0
P31 0 P3pl °J byl L1
Thus the Gauss-Jordan algorithm applies.~ An efficient way
to apply this ngorithm to the computation cf A-l is out-
lined on p. 612 of Apostol, which you should read now.
There is also a formula for A~ that involves
determinants. It is given in the next section.
Remark . It remains to consider the question whether the existence

of the inverse of a matrix has any practical significance, or whether it is
of theoretical interest only. 1In fact, the problem of finding the inverse
of a matrix in an efficient and accurate way is of great importance in
engineering. One way to explain this is to note that often.in a real-life
situation, one has a fixed matrix A, and one wishes to solve the system
A.X = C repeatedly, for many different values of C. Rather than solving
each one of these systems separately, it is much more efficient to find
the inverse of A, for then the solution X = A_l-C can be computed by

simple matrix multiplication.



Exercises
1. Give conditions on a,b,c,d,e,f such that the matrix
a

B = c
e

oo

is a right inverse to the matrix A of Example 6. Find two right inverses for A.
2. et A bea k by n matrix with k< n. Show that A has
no left inverse. Show that if A has a right inverse, then that right inverse
is not unique.
3. et B bean n by k matrix with k< n. Show that B has

no right inverse. Show that if B has a left inverse, then that left

inverse is not unique.



Determinants

The determinant is a function that assigns, to each square matrix
A, awreal number. It has certain properties that are expressed in the
following theorem:

Theorem 15. There exists a function that assigns, to each n by
n matrix A, a real number that we denote by det A. It has the following
properties:

(1) If B is £he matrix obtained from A by exchanging rows
i and j of A, then det B = - det A.

(2) If B 1is the matrix obtained form A by replacing row i of A
by itself plus a scalar multiple of row j (where i # j), then det B = det A .

(3) If B 1is the matrix obtained from A by multiplying row i
of A by the scalar c, then det B = c-det A .

(4) If I is the identity matrix, then det I =1.

We: are going to assume this theorem for the time being, and explore
some of its consequences. We will show, among other things, that these
four properties characterize the determinant function completely. Later
we shall construct a function satisfying these properties.

First we shall explore some conseguences of the first three of these
properties. We shall call properties (1)-(3) 1listed in Theorem 15 the

elementary row properties of the determinant function.

Theorem 16. Let. £ be a function that assigns, to each n by n
matrix A, a real number. Suppose f satisfies the elementary row

properties of the determinant function. Then for every n by n matrix A,

(*) Cf(A) = f(In)-det A .
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This theorem says that any function £ that satisfies properties
(1), (2), and (3) of Theorem 15 is a scalar multiple of the determinant
function. It also says that if f satisfies property (4) as well, then
f must equal the determinant function. Said differently, there is at
most one function that satisfies all four conditions.

" Proof. Step 1. First we show that if the rows of A are dependent,
then f(A) = 0 and det A = 0. Equation (*) then holds trivially in this case.

Let us aéply elementary row operations to A to bring it to echelon
form B. We need only the first two elementary row operations to do this,
and they change the values of £ and of the determinant function by at
most a sign. Thérefore it suffices to prove that £(B) = 0 and det B = 0.
The last row of B 1is the zero row, since A has rank less than n. If
we multiply this row by the scalar c, we leave the matrix unchanged, and
hence we leave the values of £ and det wuchanged. On the other hand,
this operation multiplies these values by c. Since c¢ is arbitrary, we
conclude that £(B) = 0 ard det B = O.

Step 2. Now let us consider the case where the rows of A are
independent. Again, we apply elementary row operations to A. Hcwever,
we will do it very carefully, so that the values of f and det do not
change.

As usual, we begin with the first column. If all

entries are zero, nothing remains to be done with this column.

We move on to consider columns 2,...,n and begin the process again.
Otherwise, we find a non-zero entry in the first column.

If necessary, we exchange rows to bring this entry up to the

upper left-hand corner; this changes the sign of both the func-

tions £ and det, so we then multiply this row by -1 to
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change the signs back. Then we add multiples of the first row

to each of the remaining rows so as to make ail the remaining
entries in the first column into zeros. By the preceding theorem
and its corollary, this does not change the values of either £

or det.
Then we repeat the process, working with the second

column and with rows 2,...,n. Tﬁe operations we apply will
not affect the zeros we already have in column 1.

Since the rows of the original matrix were independent, then we do
not have a zero row at the bottom when we finish, and the "stairsteps"

of the echelon form go over just one step at a time.
In this case, we have brought the matrix to a form where all of

the entries below the main diagonal are zero. (This is what is

called upper triangular form.) Furthermore, all the diagonal

entries are non-zero. Since the values of £ and det remain
the same if we replace A by this new matrix B, it now suf-

fices to prove our formula for a matrix of the form

- .
by by e+ by,
0 b.. ... b
B = 22 2ny
0 0 . by,

where the diagonal entries are non-zero.
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Step 3. We show that our formula holds for the matrix B. To do
this we continue the Gauss-Jordan elimihation process. By adding a multiple
of the last row to the rows above it, then adding multiples of the next-
to-last row to the rows lying above it, and so on, we can bring the matrix to
the form where all the non-diagonal entriesbvaniéh. This form is called

diagonal form, The values of both f and det remain the same if we replace

B by this new matrix C. So now it suffices to prove our

formula for a matrix of the form

sand ) —

b, O 0 ... 0
0 b 0 ... O

c = 22 .
0 ‘0o 0 ... b |

- . nn
(Note that thé diagonal entries of B remain unchanged when
we apply'thé Gauss-Jordan process to eliminate all the
non-zero entries above tﬁe diagonal. Thus the diagonal
entries of C are the same as those of B.)

Wer multiply'the first row of C by 1/b11. This action multiplies the
values of both f and det by a factor of 1/bll' Then we multiply the

second row by 1/b22, the third by 1/b and so on. By this process,

33’

we transform the matrix C into the identity matrix In' We conclude that

f(In) (l/bll)...(l/bnn) £(C) , and
detIn = (1AH1L..U/gm)detC.
Since det I,= 1 by hypothesis, it follows from the second equation that

b .

det C = b11 b22 «ee B
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Then it follows from the first equation that
£(c) = f(In)- det C,

as desired. B!

Be:sides proving the determinant function unique, this theorem also
tells_us one way to compute determinants. One applies this version
of the Gauss-Jordan algorithm to reduce the matrix to
echelon form. If the matrix that results has a zero row, then the
determinant is zero. Otherwise, the matrix that results is in upper triangular

form with non-zero diagonal entries, and the determinant is the product
of the diagonal entries. ‘ § {z

e A

AT BOME UL RHE AT UMnn, YL RS ATe 2ers )

The proof of this theorem tells us something else: If the rows of
A are not independent, then det A = 0, while if they are independent,

then det A # 0. We state this result as a theorem:

Theorem 16. Ilet A bean n by n matrix. Then A has rank n

if and only if det A #0 . U

Arn n by n matrix A for which det A # 0 1is said to be non-singular .
This theorem tells us that A has rank n if and only if A 1is non-singular.

Now we prove a totally unexpected result:
Theorem 17. Let A ard B be n by n matrices. Then
det (A:B) = (det A)-(det B) .
Proof. This theorem is almost impossible to prove by direct computation.
Try the case n = 2 if you doubt me ! Instead, we proceed in another direction:

Iet B bea fixed n by n matrix. Let us define a function £ of

n by n matrices by the formula

£(A) = det(A-B).
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We shall prove that f satisfies the elementary row properties of the

determinant function. From this it follows that

£(A)

f(In)- det A,

which means that

det(A.B) = det(In-B)- det A

detB'detAr
and the theorem is proved.

First, let us note that if A .,An are the rows of A, considered

l,o-

as row matrices, then the rows of A.B are (by the definition of matrix

multiplication) the row matrices Al-B,...,An-B . Now exchanging rows

i and j of A, namely Aj ard Aj' has the effect of exchanging rows
i and j of A-B. Thus this operation changes the value of £ by a
factor of -1. Similarly, replacing the ith row A, of A by A+ cAj

has the effect on A.B of replacing its ith row Ai-B by

(Ai + C-Aj)'B = Ai'B + C AJ-'B
= (row i of A.B) + c{row j of A-B).
Hence it leaves the value of f unchanged. Finally, replacing the ith row

Ai of A by cAi hés the effect on A:-B of replacing the ith row Ai-B
by

(cAi)- B = c (Ai-B) = ¢ (row i of A-B).
Hence it multiplies the value of £ by c. a

The determinant function has many further properties, which we shall

not explore here. (One reference book on determinants runs to four volumes! )

We shall derive just one additional result, concerning the inverse matrix.
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Exercises

1. Suppose that f satisfies the elementary row properties of

the determinant function. Suppose also that x, y, z are numberssuch that

X'y 2
£ 3 0 2 =1,
1 1 1

Compute the value of £ for each of the following matrices:

2x 2y 2z x Y 2 x-1 y-1 2z-1
(a) ) (b) . ' (<)

3/2 0 1l 3x+3 3y 32z2+2 1 1 1

3 3 3 x+2 y+2 z+2 4 1 3

2. Let f be the function of Exercise 1. Calculate f(In). Express

f in terms of the determinant function.

3. Compute the determinant of the following matrix, using Gauss-

Jordan elimination.

0 1 1 -1

1 2 1 3
2 -1 4
0 1 0

4. Determine whether the followinq sets of vectors are linearly

independent, using determinants.

(a) A

(b)

(1,-1,0), AZ = (0,1,-1), A3, = (2,3,-1).

=

(1,-1,2,1), A‘2 = (-1,2,-1,0), A3 = (3,-1,1,0),

= (1,0,0,1).

o
n

-
il

(c) (1,0,0,0,1), A_z = (1,1,0,0,0), A3 = (1100.110'1-)'
= (1,1,0,1,1), A= (1,0,0,0,0) .

(d)

e
N

(1,-1), AZ = (0,1), A3 = (1,1).



B37
-1
A formula for A

We: know phat an n by n matrix A has an inverse if and only if
it has rank n, and we‘know that A has rank n 1if and only if
det A # 0. Now we derive a formula for the inverse that involves determinants
directly.

We begin with a lemma about the evaluation of determinants.

Lemma 18.  Given the row matrix [a; ... a ] / let us define a

function £ of (n-1) by (n-1) matrices B by the formula

ves A
| o

[@ R

£(B) = det B

O oo

where B, ccnsists of the first j-1 columns of B) ard B censists

2
of the remainder of B. Then

£(B) = (-1)3*1 aj-det B.

Proof. You can readily check that £ satisfies properties (1)-(3)

of the determinant function. Hence £(B) = f(In_l)-det B. We compute
ay .. aj es @
£(1) = det I R I)
“n j-1 1.
<) 0 In—j

where the large zeros stand for zero matrices of the appropriate size.

A sequence of - j-1 interchanges of adjacent rows gives us the equation
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O oo

£(1) = (-1)9Yaet| 2, ...

One can apply elementary operations to this matrix, without changing the

value of the determinant, to replace all of the entries al""'aj-l’aj+l""'an
by zeros. Then the resulting matrix is in diagonal form. We conclude that

(1) = ey = e O

Corollary 19. Consider an n by n metrix of the form

— 0 ]
s || s, (
O -
A = ail aij eee ain b Ao U
0
I O
where Bl""'B4 are matrices of appropriate size. Then
L B B
det A = (-1)*a, . -det 12
13 B3 B4

Proof. A sequence of 1i-1 inﬁerchanges of adjacent rows will bring

the matrix A to the form given in the preceding lemma. [

Definition. In general, if A is an n by n matrix, then the
matrix of size (n-1) by (n-1) oktained by deleting the ith row and
the jth colum of A 1s called the (i,j)-minor of A, and is denoted Ajj'

Tre preceding corollary can then be restated as follows: (
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Corollary 20. If all the entries in the jth column of A 3ré zero except

for the entry aij in row i, then det A = (-1)l+J aij-det Ai"

]

The number (-1)'"7 det Aij that appears in this corollary is also

given a special name. It is called the (i,j)-cofactor of A. Note that

i+j

the signs (-1) follows the pattern

New we derive our formula for A .

Theorem 21. Let A be an n by n matrix with det A # 0.
If A:‘B = In' then
= (_pyJti
bij = (-1) det Aji/det A.
(Trat is, the entry of B 1in row i and column j equals the (j,1)-

cofactor of A, divided by det A. This theorem says that you can compute

2

B by computing det A and the determinants of n° different (n-1) by

(n-1) matrices. This is certainly not a practical procedure except in

low dimensions!)

th colum of B. Then X, = b,..

Proof. Let X denote the j i i

Because A-B = I, the column matrix X satisfies the equation

A-X (;*! corlum of 1)=E, .

]
(Here Ej is the -column matrix consisting of zeros except for an entry

th

of 1 in row j.) Furthermore, if A denote the i~ column of A, then
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because A~In = A , we have the equation

.th
i

A-( column of In) = A-E, = A,.

1 1

Now we introduce a couple of weird matrices for reasons that will become
clear. Using the two preceding equations, we put them together to get

the following matrix equation:

(*) A -(E .E. X E

1B i1 0 By R T S e T SR
It turns out that when we take determinants of both sides of this equation,

we get exactly the equation of our theorem! First, we show that

det [El cse Ei—]. X E1+l e e En] = xi

Written out in full, this equation states that

— x,
r, 1 O

i-1 .
det 0 ... 0}ix,10...0 = X..
i i

() . I
n-i
- % —

If X, = 0, this equation holds because the matrix has a zero row. If
X5 # 0, we can by elementary operations replace all the entries above

and beneath X4 in its column by zeros. The resulting matrix will be

in diagonal form, and its determinant will be X, .

Trus the determinant of the left side of equation (*) equals (det A)-xi,
which equals (det A)-bij. We now compute the determinant of the right
side of equation (*). Corollary 20
applies, because the ith column of this matrix consistsof zeros except for
an entry of 1 in row j. Thus the right side of (*) equals (-1)'].+i times
the determinant of the matrix obtained by deleting row j and column i.
This is exactly the same matrix as we would oktain by deleting rcw j and

colutn i of A. Hence the right side of (*) equals (—1)”1 det Aji'
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and our theorem is proved. )

Remark 1. If A is a matrix with general entry aij in

row i and column j + then the transpose of A (denoted Atr) is the matrix
whose entry in row { and column j is a4

tr

Thus {f A has size k by n, then- A has size n by k; it

can be pictured as the matrix obtained by flipping A around the line

1 2% 1 3 s
3 4| T2 4 s|.

5 6

Y ~-X. For example,

Of course,if A 1is square, then the transpose of A has the same dimensions
as A.

Using this terminology, the theorem just proved says that the inverse of
A can be computed by the following four-step process:

(1) Fcrm the matrix whose entry in row i and column j is the

number det Aij' (This is called the matrix of minor determinants.)

(Z) Prefix the sign (—1)1+J to the entry in row i and column j, for
each entry of the matrix. (This is called the matrix of cofactors. )
() Transpose the resulting matrix.

(4) Divide each entry of the matrix by det A.

In short, this theorem says that

-1 _ 1
det A

This formula for A_1 is used for computational purpcses only for 2 by 2

A (cof A)tr.

or 3 by 3 matrices; the work simply gets too great otherwise. But it is

important for theoretical purposes. For instance, if the entries of A
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are continuous functions of a parameter t, this theorem tells us that

the entries of A—1 are also continuous functions of t, provided det A

is never zero.

Remark 2. This formula does have one practical consequence of great
importance. It tells us that if det A is small as compared with the entries

of A, then a small change in the entries of A is likely to result in a

1

large change in the computed entries of A ~. This means, in an engineering problem ,

that a small error in calculating A (even round-off error) may result in a
gross error in the calculated value of A'l. A matrix for which det A is

relatively small is saidtobeill-conditioned, If such a matrix arises in practice,

one usually tries to reformulate the problem to avoid dealing with such a matrix.

(



Exercises

1. Use the formula for A-,l to find the inverses of the follow-

ing matrices , assuming the uswval definition of the determinant in low

dimensions.
a b
(a) [; . é} » assuning ad - be # 0 -,

a 0
(b) J]O e d|, assuming ace ¢ 0 ,
0 0 e
1 2 3
(e) |3 2 1
111

2. Let A be a square matrix all of whose entries are integers.
Show that if det A = ¢1, then all the entries of A™l are

integers.

3. Consider the matrices A,B,C,D,E of p. A.2}. Which of these
matrices have inverses?

4. Consider the following matrix function:

t tz t3
AGt) = 0 1 ¢
2 0 t

1

For what values of t does A'l exist? Give a formula for A~ in terms

of t.
S. Show that the conclusion of Theorem20 holds if A has an entry

of a;inrow i and colum j, and all the other entries in row i equal O.

i



*y. Theorem Let A, B, C be matrices of size k by %k, and

m by x, and m by m, respecéively. Then

A 0
det = (det A) (det C).
\B C

(Here 0 is thé zero matrix of appropriate size.)

Proof. lLet B and C be fixed. Fcr each k by k matrix

A, define
A

£(A) =det

.
B E_.

(a) Show f satisfies the elementary row properties of the determinant
function.

(b) Use Exercise 5 to show that f(Ik) = det C.

{c) Complete the proof.
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Ccnstruction of the determinant when n < 3.

The actual definition of the determinant function is tke least intéresting
part of this entire discussion. The situation is simiiar to the situation
with respect to the functions sin x, cos x, and eX. You will recall that
their actual definitions (as limits of Q%er series) were not nearly as interesting
as the properties we derived from simple basic assumptions about them.

We first consider the case where n< 3, which isdoubtless familiar

to you. This case is in fact all we shall need for our applications to calculus.

We begin with a lemma:

Lerma 21. Let £(A) be a'real—valued function of n by n matrices.
Suppose that:

(i) Exchanging any two rows of A changes‘the value of f by a factor

of -1.

(ii) For each i, £ 1is linear as a function of the ith row.
Then f satisfies the elementary row proverties of the determinant function.

Proof. By hypothesis, f satisfies the first elementary row property.
We check the other two.

Let Ajr... Ay be the rows of A. To say that f 1is linear

as a function of row i alone is to say that (when £ is written as a function

of the rows of A):

(*) £(a

TARRX: cX + dy, ... ,An) = Cf(Al""'X""'An) + df(Al,...,Y,...,An),

where <X + dY and X and Y appear in the ith component .

. . .th
The special case d = 0 tells us that multiplying the i7" row

of A by ¢ has the effect of multiplying the value of £ by c.
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We now consider the third type of elémentary operation.
Suppose that B is the matrix obtained by replacing row i of A by
itself plus c times row j. We then compute (assuming j > i for

convenience in notation),

£(8) = f(Al,...,Ai+cAJ.,...,TAJ.,...,An)
A ;th ;tn
= EA A A e A) ¢ G E( A A A ).
T.tn (in Cin Tin
i j i j

The second term vanishes, since two rows are the same. (Exchanging them does
not change the matrix, but by Step 1 it changes the value of f by a factor

of -1.) [

Definition. We define

det ]:a] = a.

[(a a
det ' ’ = a.b, - a5sb

Lbl b2 172 271,

4 %2 3 _ _
b. b b, b
det bl b2 b3 = al. det 2 73| _ a, det 13 +a3. det
: C, Cy oy c3—
[C1 2 ©3

Theorem 22.  The preceding definitions satisfy the four conditions
of the determinant function.
Proof. The fact that the determinant of the identity matrix is 1
follows by direct ccmputation. - It then suffices to check that (i) and (ii)
of the precéding theorem hold .
In the 2 by 2 case, exchanging rows leads to the determinant blaz- b2a1 '

which is the negative of what is given.

o'
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In the 3 by 3 case, the fact that exchanging the last two rows changes the
sign of Ehe determinant follows from the 2 by 2 case. The fact that exchanging
the first two rows also changes the sign follows similarly if we rewrite the

formula defining the determinant in the form

a, a a, a a, a

det| 1 2-c3 - det| ! 3~cé + det| 2 3 =
’ b
P P b1 Py P2 B3

Finally, exchanging rows 1 and 3 can be accomplished by three exchanges of
adjacent rows [ namely, (A,B,C) -5 (a,C,B) -» (C,A,B) -5 (C,B,A) ], so it changes

the sign of the determinant.

To check (ii) is easy. Consider the 3 by 3 case, for example. We

know that any function of the form

f(X) = [a b c].X = ax; + bx, + cxq
is linear, where X 1is a vector in V3 . The function
Xp %X X3
f(X) = det b1 b2 b3
1 %2 ©3

hes this form, where the coefficients a, b, and ¢ involve the constants
bi and cj . Hence f 1is linear as a function of the first row.
The "row-exchange property" then implies that f is linear as a function

of each of the other rows. O



Exercise

*1.

(a) Show that det I
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Let us define

a a a a
1 2 3 4 _
b. b. b. b by by b by b3 by
1 2 3 4 _
= a,-det |c c c - a,-det}|c c c
c c c c 1 3 4 2 1 4
1 2 3 4 4, d, d 4, 4, 4
cl1 d2 d3 d4 2 4 1 3 ft_
b1 b, b b1 b
+ a3-det c1 c c - a4-det_ c1 c3 .
d1 d, d d1 d d3
4 = 1.

. (b) Show that exchaiing any two of the last three rows changes the sign of the

determinant.

(c) Shavthat exchanging the first two rows changes the sign. [Hint: Write the

expression as a sum of terms involving det [?i aj]‘ 1
b

iP5

(d) Show that exchanging any two rows changes the sign.

(e) Show that det 1is linear as a function of the first row.

(f) Conclude that det is linear as a function of the ifl' row.

(g) Conclude that this formula satisfies all the properties of the determinant

function.
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Construction of the Determinant Functiony Suppose we take the posi-
tive integers 1, 2, ..., k and write them down in some arbitrary order,
say ji, Ja ..., jx. This new ordering is called a permutation of these
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integers. For each integer j; in this ordering, let us count how many

integers follow it in this ordering, but precede it in the natural ordering
1,2, ...,k This number is called the number of inversions caused by the
integer 7;. If we determine this number for each integer j; in the ordering
and add the results together, the number we get is called the total number
of inversions which occur in this ordering. If the number is odd, we say
the permutation is an odd permutation; if the number is even, we say it is
an even permutation.

For example, consider the following reordering of the integers between
1 and 6:

2,5, 1,3, 6, 4.

If we count up the inversions, we see that the integer 2 causes one inver-
sion, 5 causes three inversions, 1 and 3 cause no inversions, 6 causes one
inversion, and 4 causes none. The sum is five, so the permutation is odd.

If a permutation is odd, we say the sign of that permutation is —; if
it is even, we say its sign is +. A useful fact about the sign of a permuta-
tion is the following:

Theorem Q?Jf we 1nterchange two adjacent elements of a per-
mutation, we change the sign of the permutation.

Proof. Let us suppose the elements j; and j;y; of the permutation
Juy « <oy JiyJiery - -+, Ji are the two we interchange, obtaining the permu-
tation

jh LEERES !j!'-!—lyji') CEERR )jk-

The number of inversions caused by the integers jy, . . ., ji_y clearly is
the same in the new permutation as in the old one, and so is the number
of inversions caused by jis, . . ., &. It remains to compare the number of
inversions caused by j;41 and by j; in the two permutations.

Case I: j; precedes jii1 in the natural ordering 1, . . ., k. In this case,
the number of inversions caused by j; is the same in both permutations,
but the number of inversions caused by 7;;: is one larger in the second
permutation than in the first, for j; follows j;;; in the second permutation,
but not in the first. Hence the total number of inversions is increased by
one.

Case 11: j; follows j.y1 in the natural ordering 1, ..., k. In this case,
the number of inversion caused by j;y is the same in both permutations,
but the number of inversions caused by j; is one less in the second permu-
tation than in the first.

In either case the total number of inversions changes by one, so that the
sign of the permutation changes. O



ExampLe. If we interchange the second and third elements of the
permutation considered in the previous example, we obtain 2, 1, 5, 3, 6, 4,
in which the total number of inversions is four, so the permutation is even.

Definition. Consider a k by k matrix
 STRREIRN 1 21

A =
Try * * * Gkk

Pick out one entry from each row of A; do this in such a way that these
entries all lie in different columns of A. Take the product of these entries,

Q15,025,0355 ° * * Ckjyy

and prefix a + sign according as the permutation ji, . . ., jx is even or
odd. (Note that we arrange the entries in the order of the rows they come
from, and then we compute the sign of the resulting permutation of the
column indices.)

If we write down all possible such expressions and add them together,
the number we get is defined to be the determinant of A.

ReMArRk. We apply this definition to the general 2 by 2 matrix, and

obtain the formuls

Q11 Q12
det [ = @11029 — Q12C21.
12 1Y

If we apply it to a 3 by 3 matrix, we find that

an Qa2 a3 + aneas; — a1102:032
det| as1 @2 a2z | = — @12821G33 + @12G2303
@31 Q32 Q33 + a130891032 — A13022031.

The formula for the determinant of a 4 by 4 matrix involves 24 terms,
and for a 5 by 5 matrix it involves 120 terms; we will not write down these

formulas. The reader will readily believe that the definition we have -

given is not very useful for computational purposes!

The definition is, however, very convenient for theoretical purposes.

B50
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Theorem 24. The determinant of the identity matrix is 1.

e

Proof. Every term in the expansion of det In has a factor

of zero in it except for the term 8198550+ By 7 and this term equals 1.[Q

7

Theorem 25 If A' is obtained from A by interchanging rows
i and i+1, then det A' = - det A.

Proof. Note that each temm

in the expansion of det A’ also appears in the expansion of det A, because
we make all possible choices of one entry from each row and column when
we write down this expansion. The only thing we have to do is to compare
what signs this term has when it appears in the two expansions.

Let ayy, « - - @i @is1.404, © * - @15 be a term in the expansion of det A.
If we look at the corresponding term in the expansion of det A’, we see
that we have the same factors, but they are arranged differently. For to
compute the sign of this term, we agreed to arrange the entries in the
order of the rows they came from, and then to take the sign of the cor-
responding permutation of the column indices. Thus in the expansion of
det A’, this term will appear as

Qg 0 Rig1,50 @i, 0 Qrgye

The permutation of the column indices here is the same as above except
that elements j; and j;;y have been interchanged By Theorem 8.4, this
means that this term appears in the expansion of det A’ with the sxgn
opposite to its sign in the expansion of det A.

Since this result holds for each term in the expansion of det A’, we have
det A’ = —det A. . O

Theorem 264 The function det 1is linear as a function of the ith Yow.

Proof. Suppose we take the constant matrix A, and repléce its ith
row by the row vector [x1 .o xk] . When we take the determinant of this
new matrix, each term in the expression equals a constant times xJ. , for

some j. (This happens because in foﬁning this term, we picked out exactly one

entry from each row of A.) Thus this function is a linear combination

of the components Xy that is, it has the form

[;1 ck-l X » for some constants c, . O



Exercises

1. Use Theoren125ﬁ‘to show ‘that exchanging any two rows of A
changes the sign of the determinant.

2, 1 i ! , ® CICN ) . i initi
Consider the term al_]1 a2j2 aka in the definition of

the determinant. (The integers jl' jz, ...,jk are distinct.) Suppose
we arrange the factors in this term in the order of their column indices,

obtaining an expression of the form

a, pa e.oQ .
ill 122 1kk

Show that the sign of the permuation il,iz,...,ik equals the sign of the
permutation jl,jz,...,jk .

Ccnclude that det Atr = det A in general.

3. Iet A bean n by n matrix, with general entry aij in
row i and column j. Let m be a fixed index. Show that
n
det A = ZZ:: a_, ° (--l)m+j det A ., .
j=1 mj mj

Here Amj denotes , as usual, the (m,j)-minor of A. This formula is
called the"formula for expanding det A according to the cofactors of
the mth row." [Hint: Write the mth row as the sum of n vectors, each
of which has a single non-zero component. Then use the fact that the

th

determinant function is linear as a function of the m~ row.]
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The cross-product in V

3

are vectors in V.,

If A= (al, ay a3) and B = (bl’ b2, b3) | 3

we define their cross product to be the vector

a a a a a a—
AXB = «m4;2b3,-th£lb3 chtbl 21
2 P3 1 P3 1 22

We shall describe the geometric significance of this product shortly.

But first, we prove some properties of the cross product:

Theorem 27. Fcr all vectors A, B in V we have

3[
(a) BxA = -~ AxB.

1]

(b) A%(B + C) AXB + AxC,

(B + C)XA BXA + CXA .

1]

(c¢) (cA)x B c(AxB) = AXx{(cB) .

(d) A%B is orthogonal to both A and B.

() 1axBl* = (at®-uBl® - (a-3)%.

Proof. (a) follows because exdianging two rows of a determinant
changes the sign; and (b) and (c) follows because the determinant is linear

as a function of each row separately. To prove (d), we note that if

C = (cl, Cpr c3) , ‘then

€1 S C3
C-(AXB) = de a; a2, a5 ,
1 Py b3

by definition of the determinant. It follows that A-(AXB) = B:(AxB) =0
because the determinant vanishes if two rows are equal. The only proof
that requires some work is (e). For this, we recall that

2 2 2 )2 2 2 2

(a+b)"=a"+b " +2ab, and (a + Db+ c = a“ +b° + c” + 2ab + 2ac + 2bc .

Equatioi (e) can be written in the form
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2 2 ' 2 2
(a2b3 - a3b2) + (alb3 - a3b1) v+ (alb2 - azbl) + (alb1 + a2b2 + a3b3) =

(ai + ag + ag) (b? + b

2

2
2+b3)

We first take the squared terms on the left side and show they equal
the right side. Then we take the "mixed" terms on the left side and show
they equal zero. The squared terms on the left side are

(a,0,)° + (agby)? 2 2

b, D%+ (ap)? e ()2 + (apy)? + (ap)? + (ap)? + (ap,)? + (a

which equals the right side,
3 2
i (aibj) .
i,j =1
The mixed terms on the left side are

-2a,biazb, - 2a,biagh, - 2abab + 2a;basb, + 2abiagbs + 2ajbasby = 0. 1

In the process of proving the previous theorem, we proved also
the following:

Theorem 28. Given A, B, C , we have A.(BxC) = (AxB)-C.

Proof. This follows from the fact that

a; a a3 ¢, ¢ c3 O
cdet bl b b3 = de al a2 a
c1 c:2 c3 bl b b3

Definition. The ordered 3-tuple of independent vectors (A,B,C)
of vectors of V3 is called a positive triple if
A.-(BXC) » 0. Otherwise, it is called a negative triple. A positive
triple is sometimes said to be a right-handed triple, and a negative one

is saiid to be left-handed.

2
3P3)
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The reason for this. terminology is the following: (1) the triple
(i, §, k) 1is a positive triple, since 1i-(jxk) = det I3 =1 , and

(2) 1if we draw the vectors i, j, and k in V3 in the usual way,
and if one curls the fingers of one's right hand in the direction from the
first to the second, then one's thumb points in the direction of the

third.

2 P
S
7
Furthermore, if one now moves the vectors around in V3, perhaps changing their

lengths and the angles between them, but never letting them become dependent,

and if one moves one's right hand around correspondingly, then the

fingers still correspond to the new triple (A,B,C) in the same way, and
this new triple is still a positive triple, since the determinant cannot
have changed sign while the vectors moved around.(Since they did not become

dependent, the determinant did not vanish.)

T
N A

<

Theorem 29. Iet A and B be vectors in V3. If A" and: B

are dependent, then AXB = 0. Otherwise, AXB 1is the unique vector
orthogonal to both A and B having length IAlIl {iBll sin 6 (where ©
is the angle between A and B), such that the triple (A,B,AXB)

forms a positive (i.e.,right-handed) triple.



Proof. We know that AXB 1is orthogonal to both A and B. We

also have

iag?- 1sif - (a.p)?

A x 81

(A% - (BIZ (1 - cos?e ) = fal? BN sin%o .
Finally, if C = AXB, then (A,B,C) is a positive triple, since

A.(BXC) = (AXB).C = (AXB)-(AxB) = jaxB|Z >0 .
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Polar coordinates

Let A = (a,b) be a point of v, different from 0. We wish to define what we mean
by a "polar angle" for A. The idea is that it should be the angle between the vector A
and the unit vector i = (1,0). But we also wish to choose it so its value reflects whether
A lies in the upper or lower half—plane. So we make the following definition:

Definition. Given A = (a,b) # 0. We define the number
*) ‘ 0= + arcos (A-i/||Al]
to be a polar angle for A, where the sign in this equation is specified to be + if b > 0,
and to be —if b < 0. Any number of the form 2mn + 6 1is also defined to be-a polar angle
for A. |

A 3
L )Q: :-_'_T_-
A \ m
A

If b = 0, the sign in this equation is not determined, but that does not matter. For
if A = (a,0) where a > 0, then arccos (A-i/||A]]) = arccos 1 = 0, so the sign does not
matter. And if A = (—a,0) where a > 0, then arccos (A-i/||A||) = arccos (—1) = =. Since
the two numbers + 7 and — 7 differ by a multiple of 27, the sign does not matter, for
since one is a polar angle for A, so is the other.

Note: The polar angle 6 for A is uniquely determined if we require —7 < ¢ < 7.

But that is a rather artificial restriction.
9 .9 1/2
Theorem. Let A = (a,b) # 0 be a point o_fV2. Let r = (a“4+b°) = ||A]|; let 0 be
a polar angle for A. Then

A = (r cos 6, r sin 6).
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Proof. If A = (a,0) witha > 0, thenr = a and 6 = 0 + 2mm; hence
' rcos #=a and rsin §=0.
If A = (—a,0) with a > 0, then r = a and 0 = 7 +2m, so that
rcos  =—a and rsin §=0.
Finally, suppose A = (a,b) with b # 0. Then A-i/||A| = a/r, so that

0 = 2mm + arccos(a/r).

Then
afr = cos(+(6—2mm)) = cos 4, or a =r cos 6.
Furthermore,
b2=r2-a’= r2(1—cos20) =1 sin20,
50

b = #rsin 6.
We show that in fact b =rsin §. Forif b > 0, then # = 2m~ + arccos(a/r), so that
2mr< f<2mm+ 7
and sin ¢ is positive. Because b, r, and sin § are all positive, we must have b = r sin §
rather than b = —r sin 4.
On the other hand, if b < 0, then 0 = 2m7 — arccos(a/r), so that
2mr—71< 0 < 2m7
and sin @ is negative. Since r is positive, and b and sin # are negative, we must have
b = r sin #rather thanb = —rsin . o

lPlanetary Motion |

In the text, Apostol shows how Kepler’s three (empirical) laws of planetary motion

can be deduced from the following two laws:
(1) Newton’s second law of motion: E = ma.

(2) Newton’s law of universal gravitation:

mM
IEll = G A
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Here m, M are the masses of the two objects, r is the distance between them, and G is a
universal constant.

Here we show (essentially) the reverse—how Newton’s laws can be deduced from
Kepler’s. oTJo' st YL whow moaa 1 M

More precisely, suppose a planet P/moves in the xy plane with the sunlat the
origin. Newton’s laws tell us that the acceleration of P is given by the equation

§='IIHE= ﬁll"[_G I_n"l\2£]'u’r = —%uf
r T

That is, Newton’s laws tell us that there is a number A such that

A
A=——5 )
12’%

and that A is the same for all planets in the solar system. (One needs to consider other

systems to see that ) involves the mass of the sun.)
This is what we shall prove. We use the formula for acceleration in polar

coordinates (Apostol, p. 542):

2 2 2
_ [d°r d dr dd d
&= [gz*f{ag] ]léﬁ [%ﬂf“gt—g]ﬁe

\ ‘\
M \

/

We also use some facts about area that we shall not actually prove until Units VI and

VII of this course.

(a) Kepler’s second law implies that the acceleration is radial.
(b) Kepler’s first and second laws imply that

A
___P
&=——75l,
I
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where ’\P is a number that may depend on the particular planet P.

Proof. (a) We use the following formula for the area swept out by the radial

vector as the planet moves from polar
\ A={(e) angle 0, to polar angle 0,
T 02
2 _ 1.2
2, A= J 51° do.
/ 9,

Here it is assumed the curve is specified by giving r as a function of 6.
Now in our present case both § and r are functions of time t. Hence the area swept

out as time goes from tq to t is (by the substitution rule) given by

t
A(t) =J [% 240 q.
t

Differentiating, we have %—% = %r2 %_Q , which is constant bj' Kepler’s second law. That
is,
* dA _ 2d0_
(*) n=rm=K
for some K.
Differentiating, we have
2 .
drdfd , 2d%0 _
2r af aT 4+ r —-—2 = 0.

- dt
The left side of this equation is just the transverse component (the Ly component) of al

Hence a is radial.
(b) To apply Kepler’s first law, we need the equation of an ellipse with focus at
the origin. |

(va) We put the other focus at (a,0), and use
m the fact that an ellipse is the locus of all

(a,0) points (x,y) the sum of whose distances

from (0,0) and (a,0) is a constant b > a.



B61

The algebra is routine:

o+ v J(xa)? 4+ P =, | ’
or r+‘/12 — 2a(r cos 0) + a2=b,
- 2a(r cos ) + a = (b—r)2 =b% —2br + r2,
2br — 2ar cos 4 = b2 - az,
 (b%-a?y/2p
I = a y
1 - Ecos 9
c b2 — a.2

(**) I=m?)s——y, wherec:—-zb—— and e=a/b.

e
(The number is called the eccentricity of the ellipse, by the way.) Now we compute the
radial component of acceleration, which is : |
£5-04)
oIl
Differentiating (**), we compute

dr -1 . ad
= C|————(esin ) .
@ [(1—e cos 6) ( )ag]

Simplifying,
dr _ 1 2, . ~dl
a% =3 (-1)r%(e sin O3t
Then using (*) from p. B60, we have |
%% = %(e sin §)K.

Differentiating again, we have
2
d 1 dé
Et—% — E(e COs 0)a'fK,
or

(o
)
[ ]
)

e cos 6) [—I%]K, using (*) to get rid of d4/dt.

I

?'i,l

Similarly,
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d 2 K 2
- I[HT?] = - r[—g] using (*) again to get rid of dd/dt.
I :

Hence the radial component of acceleration is (adding these equations)

Lo cos 6.)K2 K2 K2[e cos 0 1]
C

—_ = - +_
I_Q 3 :7 c r
__ﬁe o8 0+1—e Ccos
- r2 c c

Thus, as desired,

(***) a=— gﬁr’ where Ap =

(c) To apply Kepler’s third law, we need a formula for the area of an ellipse,
which will be proved later, in Unit VII. It is

Area = T

(major axis) (minor axis)
2 2 ’

o The minor axis is easily determined to be

3‘/” given by:

\w minor axis = 2| b2/4—a2/4 =N b2—-a2.
It is also easy to see that

major axis = b.

Now we can apply Kepler’s third law. Since area is being swept out at the constant
rate %K, we know that (since the period is the time it takes to sweep out the entire
area),

Area = (%K)(Period).
Kepler’s third law states that the following number is the same for all planets:

(Period)?  _ 4(Area)?/K?
(major axis)® (major axi s)3
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4 7r2(major axis)z(minor axis)z/K2

(major axis)
(m i nor axigL2 1
(major axis) 2

Bl

Thus the constant ’\P is the same for all planets. o0

— PR JRESESSEESISS----A

cupPLEMENTARY EXERCISES FoR UNIT L
uprLe =

(1) Let L be a line in V, with direction vector A; let P be a point not on L. Show that the
point X on the line L closest to P satisfies the condition that X—=P is perpendicular to A.
(2) Find parametric equations for the curve C consisting of all points of Vz. equidistant
from the point P = (0,1) and the line y ==1. If X is any point of C, show that the tangent
vector to C at X makes equal angles with the vector X~ P and the vector? (This is the
reflection property of the parabola.)
(3) Consider the curve f(t) =(t,t cos (n/t)) for0 <t <1,

= (0,0) fort = 0.
Then f is continuous. Let P be the partition

P = {0,1/n,1/(n-1),...,1/3,1/2,1}.

Draw a picture of the inscribed polygon =n(P) in the case n = 5. Show that in general, n(P)
has length

|m(P)| 21+ 2172 + 1/3 + ... + 1/n).

Conclude that f is not rectifiable.



(4-) Let u be a fixed unit vector. A particle moves in Vn in such a way that its position

vector r(t) satisfies the equation r(t)-u = 5¢3 for all t, and its velocity vector makes a

constant angle 4 with u, where 0 < 8 < x/2.
(a) Show that ||yl = 15t2/cos 8.
(b) Compute the dot product a(t)-v(t) in terms of t and 4.
(57 A particle moves in 3—space so as to trace out a curve of constant curvature K = 3.
Its speed at time t is e2t. Find lla(t)|], and find the angle between v and a at time t.

QL) Consicer the curve given in polar coordinates by the equaticn
r=e9 for 0% 0¢<2rM , vwhere M
Find the length of this curve.
arbitrarily large?

is a positive integer.

What happens as M becomes

(’7) (z) Derive the following formula, which can be used to compute the
curvature of a curve in R':
L
(r2) KN = (ee)e — (@),
(k)

Find the curvature of the curve r(t)

= (1+t, 3t, 2+t2, 29,

B¢ 4
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Derivatives of vector functions.

Recall that if x is a point of R" and if £(x) is

a scalar function of x, then the derivative of f (if it

exists) is the vector

Ve = (D f,...,D_f)

1 n

(0f/3x

Lre-r3E/0x) .

For some purposes, it will be convenient to denote the derivative

of f by a row matrix rather than by a vector. When we do this,

we usually denote the derivative by Df rather than VE. Thus
Df(a) = [le(g) D2f(§) ‘e an(g)].

If we use this notation, .the definition of the derivative

takes the following form:
f(ath) - £(a) = Df(a) h + e(h)lhl,

where ¢e(h) —> 0 as h —> 0. Here the dot denotes matrix
multiplication, so we must write h as a column matrix in

order for the formula to work;
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This is the formula that will generalize to vector functions
£.

Definition. Let S be a subset of R®. If

f : S —> Rk, then £(xX) is called a vector function of a

vector variable. In scalar form, we can write £(x) out in the

form

f(x) = (fl(xl,...,xn),...,fk(xl,...,xn)).

Said differently, f consists of "k real-valued functions of
n variables." Suppose now that £ 1is defined in an open ball

about the point a. We say that £ is differentiable at a if

each of the functions £1(x) ... £ (X) is differentiable at a

(in the sense already defined). Furthermore, we define the

derivative of £ at a to be the matrix

[ D, £; (a) Dy (@) ... anl(g)T
Plfz(i) szz(g) oo anz(i)
Df(a) = .

[D1f(@  Dpfy(a) ... Dify(a)]

That is, Df(a) is the matrix whose 188 row is the derivative
Dfi(g) of the iEE coordinate function of f£.
Said differently,_the derivative ‘Df(a) _ of~ " £ at "a

is the k by n matrix whose entry in row i and column 3j is

Djfi(g) = afi/axj;
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it is often called the Jacobian matrix of £(x). Another

notation for this matrix is the notation

a(fl,...,fk)
a(xl”'f’xn)

With this notation, many of the formulas we proved for a
scalar function £(x) hold without change for a vector function
f(x). We consider some of them here:

Theorem 1. The function £(x) 1is differentiable at

o

if and only if

f(ath) - £(a) = Df(a) +h + E(h) Inl,
where E(h) —> ¢ as h —> 9.
(Here £, h, and E are written as column matrices.)

Proof: Both sides of this eéquation represent column
matrices., If we consider the iEE entries of these matrices,

we have the following equation:
fi(§+§) - fi(g) = Dfi(g)' h + Ei(E)HE“-

Now f is differentiable at a2 1if and only if each function

fi is. And fi is differentiable at 2 1if and only if

Ei(g) —> 0 as h —> 0. But Ei(g) —> 0 as h —> 0, for

each i, if and only if E(h) —> 0 as h —> 0. O
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Theorem 2. If f£(x) is differentiable at a, then ¢

is continuous at a.

Proof. If £ 1is differentiable at a, then so is each
function fi' Then in particular, fi is continuous at a,
whence f 1is continuous at a.

The general chain rule.

Before considering the general chain rule, let us take the

chain rule we have already proved and reformulate it in terms of

matrices.

Assume that f(x) = f(xl,...,xn) is a scalar function
defined in an open ball about a, and that x(t) = (xl(t),...,
xn(t)) is a parametrized curve passing through a. Let
§(t0) = a. If £(x) is differentiable at a, and if x(t) |is

differentiable at t and we have shown that the composite

o’

f(§(t)) is differentiable at t and its derivative is given

OI
by the equation

L ofx(e) = Tex(e)) « x' (¢)

when t = to.

We can rewrite this formula in scalar form as follows:

dx dx

d vy 2 0 K1 g 9%,
dt £(x(t)) = axl et + axn de '

or we can rewrite it in the following matrix form:
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dxl/dt

Fx(e) = [%’i— -~ N

1 n
: ‘dxn/dt

Q‘lna
ot

Recalling the definition of the Jacobian matrix Df, we see

that the latter formula can be written in the form

£(x(t)) = DE(x(t)) - Dx(t).

QJIQJ
t

(Note that the matrix Df is a row matrix, while the matrix
Dx is by its definition a column matrix.)

This is the form of the chain rule that we find especially
useful, for it is the formula that generalizes to higher dimen-
sions.

Let us now consider a composite of vector functions of
vector variables. For the remainder of this section, we assume
the following:

Suppose £ 1is defined 92 an open ball in R"  about a,.

taking values in RK, with f(a) = b. Suppose g is defined

in an open ball about b, taking values in RP. Let

F(x) = g(f(x)) denote the composite function.
n e
R R et
& ¥
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We shall write these functions as

£(x) = £(xy,..0px))  and  g(y) = G(Yyreery,).

If £ and g are differentiable at a and b

respectively, it is easy to see that the partial derivatives of

F(x) exist at a, and to calculate them. After all, the iEE

coordinate function of F(x) 1is given by the equation
Fi(x) =g, (£(x)).

If we set each of the variables Xy + except for the single
variable Xj' equal to the constant a8,, then both sides are
functions of x. alone. The chain rule already proved then

J
gives us the formula

o aFi agi afl agi af2 agi afk
( — = + + oo 4+ ——= 2
axj Byl axj 8y2 Byz ayk ij |

Thus
Djfl
DjfZ

DyFy = [Py9;  Dpg;  +++ D9yl ) .
[P35
th

= [iEE row of Dg] * | j=— column| .

of Dg
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domains, then the composite F(x) = g(f(x)) 1is continuously

differentiable on its domain, and

DF (x) = Dg(f(x)) +« Df(x).
This theorem is adequate for all the chain-rule applica-
tions we shall make.
Note: The matrix form of the chain rule is nice and neat, and
it is useful for theoretical purposes. In practical situations,
one usually uses the scalar formula (*) when one calculates par-'
tial derivatives of a composite function, however.
The following proof is included solely for completeness ; we

shall not nead to use it:.
Theorem 4. Let f and g be as above. If f is

differentiable at a and g 1is differentiable at b, then

F(x) = g(£(x))

is differentiable at a, and

DF(a) = Dg(b) - Df(a).
Proof. We know that
g(b+k) - g(k) = Dg(b) « k +,§1(E)H§H,

where E;(k) —> 0 as k —> 0. Let us set k = f(a+th) - £(a)

in this formula. Then
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Thus the Jacobian matrix of F satisfies the matrix equation

This is our generalized version of the chain rule.

There is, however, a problem here. We have just shown that
if g‘vand g are differentiable, then the partiai derivatives
of the composite function F exist. But we know that the mere
existence of the partial derivatives of the function F. is not
enough to guarantee that Fi is differentiable. One needs to
give a separate proof that if both £ and g are differentiable,
‘then so is the composite F(x) = £(g(x)). (See Theorem 4
following.)

One can avoid giving a separate proof that F is

differentiable by assuming a stronger hypothesis, namely that

both f and g are continuously differentiable. 1In this case,

the partials of £ and g are continuous on their respective

domains; then the formula

k
D.F, (x) = Zﬂ;l Dgg; (£(x)) * Dyfp (x),

J 1=
which we have proved, shows that DjFi is also a continuous
function of X. Then by our basic theorem, Fi is differentiable
for each i, so that F is differentiable, by definition.
We summarize these facts as follows:

Theorem 3. Let £ be defined on an open ball in R?

about a, taking values in Rk; let f(a) = b. Let g be

defined in an open ball about b, taking values in RP. If

|Hh

and g are continuously differentiable on their respective
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(**) g(f(a+h)) - g(f£(a)) = Dg(b) * (£(ath) - f£(a))
+ E, (E(a+h) - £f(a))|£(a+h) - f(a)ll.
Now we know that
f(ath) - £(a) = Df(a) «h + E, (h)lhl,

where E,(h) —> 0 as h —> 0. Plugging this into (**), we

get the equation
g(f(ath) - g(f(a)) = Dg(b) + Df(a) * h + Dg(b) - gz(g)ugu

+ By (£(ath) -

1 (a))ll£(a+th) - £(a)ll.

Thus
F(ath) - E(a) = Dg(b) * Df(a) « h + E5(h)lhl,
where
E3z(h) = Dg(b) * E, (h) + E;(£(a+h) - £(a))l £(a+h) - £(a)ll
Il
We must show that E, —> 0 as h —> 0. The first term is

3
easy, since Dg(b) is constant and \EZ(E) —> 0 as h —> 0.

Furthermore, as h —> 0, the expression f(at+h) - f£(a)

approaches 0 (since £ is continubus), so that
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E;(£(ath) - £(a)) —> 0. We need finally to show that the

expression
Il £(a+h) - £(a)il /i hll

is bounded as h —> 0. Then we will be finished. Now

[+h
V)]

+
=
|
[+
|
1=

= [IDf(a) -

E
|

B+ Ep (I

=2

< ID£(a) -« ul + IE, ()N,

where u 1is a unit vector. Now EZ(Q) —> 0 as h —> 0,
and it is easy to see that |[IDf(a) * ul < nk max]Difj(g)l.
(Exercise!) Hence the expression If(a+h) - £(a)l/lnl  is

bounded, and we are finished. O

Differentiating inverse functions.

Recall that if f(x) 1is a differentiable real-valued
function of a single real variable x,  and if f'(x) > 0
for a< x<b, then f is strictly increasing, so it has an

inverse g. 'Furthermore, g 1is differentiable and its deriva-

tive satisfies the formula

g' (£(x)) = Fregy -

Part, but not all, of this theorem generalizes to vector

functions. We shall show that if f has an inverse g, and
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if g 1is differentiable, then there is a formula for Dg
analogcus to this one. Specifically, we prove the following:

Theorem 5. Let S be a subset of R". Suppose that

g : A —> Rn and thaE

f(a) = b. Suppose also that £f has an
inverse g.

If f 1is differentiable at a, and if g 1is differen-

tiable at b, then

Proof. Because g 1is inverse to £, the equation

(£(x)) = x holds for all x in S. Now both £f and g are

Q

differentiable‘and so is the composite function g(£(x)). Thus

we can use the chain rule to compute

Dg(b) - Df(a) = D(identity) = I_.
Since the matrices involved are n by n, this equation implies

that

Dg(b) = [DE(a)]1™t. O

Remark 1. This theorem shows that in order for the
differentiable function £ to have a differentiable inverse,

it is necessary that the Jacobian matrix Df(a) have rank n.

Roughly speaking, this condition is also sufficient for £ to

have an inverse.
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More precisely, one has the following result, which
is the famous "Inverse Function Theorem" of Analysis:

Suppose f is defined and continuously differentiable
in an open ball of R" about a, taking values in R". If
Df (a) has rank n, then there is some (probably smaller) open
ball B about a, such that f carries B in a 1-1 fashion
onto an open set C in R, Furthermore, the inverse function
g : C —> B 1is continuously differentiable, and
Dg (£(x)) = [DE(x)]1 1.

Remark 2. For a function of a single variable, vy = f(x),

the rule for the derivative of the inverse function x = g(y)

is often written in the form

This formula is easy to remember; the Leibnitz notation for
derivatives "does the work for you". It is tempting to think
that a similar result should hold for a function of several

variables. It does not.

For example, suppose

f(x,y) = (u,v)

is a differentiable transformation from the x - y plane to

the u - v plane. And suppose it has an inverse; given by
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(x,y) = g(u,v).

Our theorem tells us that if f(a) = b, then

Dg(b) = [DE(a)] L.

If we write out these matrices in Leibnitz notation, we obtain

the equation

IxX/3u IX/dV du/9x du/dy
dy/du dy/ov 3v/dx av/dy

Now the formula for the inverse of a matrix gives (in the case

of a 2 by 2 matrix) the formula

a b —l l - d -b

" Applying this formula, we obtain the equation

Ix/du ax/av 1 av/dy =-3u/dy

dy/du dy/av - g2 ¥ _ 28 o¥ -3v/dx du/dx

This means, for example, that

— — - — —
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Thus the simplistic idea that 3x/9%v "should be" the
reciprocal of 3v/3x is very far from the truth. The Leibnitz
notation simply doesn't "do the work for ydu" in dimensions

greater than i, Matrix notation does.

Implicit differentiation.

Suppose F 1is a function from Rn+k to R"; let us
write it in the form
E(.}i'l) = F"(xl'.”'xn'yl""’yk)'

Let ¢ be a point of Rn, and consider the equation
F(x,y) = ¢c.

This equation represents a system of n equations in n + k
unknowns. In general, we would expect to be able to solve this
systembfor n of the unknowns in terms of the others. For
instance, in the present case we would expect to be able to
solve this system for x in terms of y. We would also expect
the resulting function x = g(y) to be differentiable.
Assuming this expectation to be correct, one can then
calculate the derivative of the resulting function g by using
the chain rule. One understands best how this is done by work-
ing through a number of examples. Apostél works several in
sections 9.6 and 9.7. At this point, you should read 9.6 and Examples 1,2,3,

and 6 of 9.7.
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A natural question to ask now is the following: to what extent
ouy assumptions are correct, that the given equation determines X
as a function of y . We discuss that question now.

First let us consider the problem discussed on p. 294 of the text.
It involves an equation of the form

F(x,y,z) =0,

where F is continuously differentiable. Assuming that one can in theory
solve this equation for z as a function of x and Y, say z = f£(x,y),

Apostol derives equations for the partials of this unknown function:

S e QF . - 2F
£ I X £ 2
= (xy) = — and S L A A
% 2F oY JF
9z oz

Here the functions on the right side of these equations ére evaluated
at the point (x,y,f(x,vy)). |

Note that it was necessary to assume that JF/dz # 0 , in order
to carry out these calculations. It is a remarkable fact that the condition
3F/9z # 0 is also sufficient to justify the assumptions we made in carrying
them out. This is a consequence of a famous theorem of Analysis called the
Implicit Function Theorem. Orie consequence of this theorem is the following:
If one has a point (xo,yo,zo) that satisfies the équation F(x,y,z) =0,
and if 9F/%z # 0 at this point, then there exists a unique differentiable
function £(x,y), defined in an open set B about (xo,yo) , such that
‘f(xb,yo) =z, and such that

| F(x,y,£(x,y)) = 0

for all (x,y) 1in B.. Of course, once one knows that f exists and
is differentiable, one can find iﬁs partials by implicit differentiation,

as explained in the text.
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(————— Example 1. Let F(x,y,z) = x2 + YZ + 22 + 1 . The equation
F(x,y,2) = 0 cannot be solved for z in terms of x and y; for in
fact there is no point that satisfies the equation.
Example 2. Let F(x,y,z) = x2 + y2 + 22 - 4. The equation
F(x,y,2z) = 0 is satisfied by the point a = (0,2,0). But OF/dz = 0
at the point a, so the implicit function theorem does not apply. This
fact is hardly surprising, since it is clear from the picture thaﬁ z
is no; determined as a function of (x,y) in an open set about the point .
(xgr75) = (0,2).
,2 However, the point b = (1,1,42)
,((;l)¥3) satisfies the equation also, and ?F/dz # O
QF(O,?ﬂ) at this point. The implicit function theorem
» 3  implies that there is a function £(x,y)
defined in a neighborhood of (xo,yo) = (1,1)
such that £(1,1) = 45' and‘ f satisfies the
equation F(x,y,z) =0 identically.
Noﬁe that £ is not uniquely determined unless we specify its value at
(xo,yo). There are two functions £ defined in a neighborhood of (1,1)
that satisfy the equation f(x,y,z) = 0, namely,

z = [4- X% - y2]

[N

L
anrd z = - [4 - x2 - yz]2

Howevér, only one of them satisfies the condition £(1,1) = 2 .

Note that at the point a = (0,2,0) we do have the condition
JF/dy # 0.  Then the implicit function theorem implies that y is
determined as a function of (x,z) near this point. The picture makes this

fact clear.

e —————
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Now let us consider the more general situation discussed on p. 296

of the text.

(*)

We have two equations

F(XIYIZIW)

G(XIYIZIW) =

"o
o

|
o

where F and G are continuously differentiable. (We have inserted

an extra variable to make things more interesting.)

functions x = X(z,w)

ard y = Y(z,w)

Assuming there are

that satisfy these equations for

all points in an open set in the (z,w) plane, we have the identities

F(X,Y,z,w) =0

and

G(X’Y,ZIW) = O 14

whence (differentiating with respect to 2z),

OF 9X . OF oY 9F _ ,
X Iz Ay 9z oz !
3G oX , 9G¥ 96 _
9X 0z dy 9z oz :
These are linear equations for 9X/Jdz and oY/dz ; we can solve them if the

coefficient matrix

2F/dx IF/dy

3G/ox

is non-singular.

can write the solution in the form

2X/9z
dY/oz

2G/dy

e—

_ (‘aF,G

OX,Y

One can use Cramer's rule, as in the text, or one

10z

9G/dz

The functions on the right side of this equation are evaluated at the point

(X(z,w) /Y(z,w) 1ZW) ,

of z and w alone.

so that both sides of the equation are functions
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You can check that one obtains an equation for the other partials
of X and Y if one replaces z by w throughout.

All this is discussed in the text. But now let us note that in
order to carry out these calculations, it was necessary to assume that the
matrix JF,G/dx,y was non-singular. Again , it is a remarkable fact
that this condition is also sufficient to justify the assumpﬁions we have
made. Specifically, the Implicit Function Theorem tells us that if
(xo,yo,zo,wo) is a‘point satisfying the equations (*), and if the matrix
dF,G/9d x,y 1is non-singular at this point, then there do exist unique
differentiable functions X (z,w) and Y(z,w) defined in an open set about
(z5:Wy) + such that

X(zo,wo) = X and Y(ZO’WO) =Yg
and such that F and G vanish identically when X and Y are substituted
for x and y. Thus under this assumption all our calculations are
justified.

—
Example 3, Consider the equations

F(x,Y,2,wW) 3xzz + 6wy2 -2z + 1 0.,

Xz - 4y/z - 3w - 7 0.

I}
1}

G(XIYrZIW)

. _ = Lo _
The points (xolyorzo,wo) = (1,2,-1,0) ard (xlrylrzl,wl) = (1,%,2,-2)

satisfy these equations, as you can check. We calculate

oxz 12wy
aF;G/bX’Y = :
' z -4/z
-6 0
At the point (X.,Y~rZ~/W.), this matrix equals , which is
0’¥0"%0""0 4 4

non-singular. Therefore, there exist unique functions x

X(z,w)

and y = Y(z,w) . defined in a neighborhood of (zo,wo) = (fl,O) that




cl9

satisfy these equations identically, such that X(-1,0) = 1 ard Y(-1,0) = 2.
Since we know the values of X and Y at the point (-1,0), we

can find the values of their partial derivatives at this point also. Indeed,

dX/dz [ 6Xz 12wy | 71 X2 - 2
0Y/dz z -4/z X + 4Y/z2
— -1 -
o 6 0 . a 1 4
-1 4 9 24 | 55

On the other hand, at the point (Xl'yl’zl'wl) = (1,%,2,-2) the

matrix JF,G/Ix,y equals

which is singular. Therefore we do not expect to be able to solve for x
and y in terms of z and Ww near this point. However, at this point,
we have k
6xz 6y 12 3/2}
BF,G/ ox,w = = .
z -3 2 -3
Therefore, the implicit function theorem implies that we can solve for x

and w in terms of y and 2z near this point.

Exercises
1. Given the continuously differentiable scalar field £(x,y),

2.3 : . = > >
let &(t) = £(t°,t” + 1). Find ¢'(1), given that Y£(1,2) =51 - § .
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2. Find the point on the surface z = xy nearest the point (2,2,0).

3. A rectangular box, open at the top, is to hold 256 cubic inches.

Find the dimensions that minimize surface area.

4, Find parametric equations for the tangent line to the curve of

intersection of the surfaces

x2 + y2 + 222 = 13,

at the point (2,1,2).

5. Let f be a scalar function of 3 wvariables. Define

2

F(t) = £(3t2,2t+1,3-t5).

Express F'(l) in terms of the first order partials of

f at the point (3,3,2).
Express F"(l) in terms of the first and second order

partials of f at the point (3,3,2).

6. Let £ : Rz — Rz and let g : Rz —_— Rs. Suppose that
f£(0,0) = (1,2) £(1,2) = (0,0).
3(0:0) = (1’332) 1(1:2) = (_1:0’1)-

Suppose that

-1 2] _ (-1 3]
0£00,0) = [T5 3 ve(L2) = [I;
1 -1 11
Dg(0,0) = |0 1 Dg(1,2) = |0 1
1 1 2 1
a) If h(x) = £(£(x)), find Dh(0,0).
b) If £ has an inverse k : R> — R%, find Dk(0,0).



7. Ccnsider the‘functions of Example 3. Find the partials
DX/ ard JY/w at the point (zgrwg) = (-1, 0).

8. Fcr the functions F and G of Example 3, compute Q(E,G)/a(x,y)
at the point (1,%,2,-2,). Given the equations F =0, G =0, for which
pairs of variables is it possible to solve in terms of the other two near

this point?
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The second-derivative test for extrema of a function of

two variables.

Theorem. Suppose that f(xl,xz) has continuous second-

order partial derivatives in a ball B about a. Suppose that

D,£ and D,f vanish at a. Let

1 2 —_—
A = Dl'lf(g), B = Dl'zf(g), C = Dzlzf(g).

(a) If B? - AC >0, then f has a saddle point at a.

(b) If B2 - ac < 0 and A > 0, then £f has a relative
minimum at a.

(c) If 82 - AC< 0 and A< 0, then £ has a relative
maximum at a. |

(d) 1If B2 - AC = 0, the test is inconclusive.

Proof. Step 1. We first prove a version of Taylor's theorem

with remainder for functions of two variables:

Suppose f(xl,xz) has continuous second-order partials in a
ball B centered at a. Let v be a fixed vector; say

v = (h,k). Then

f(atty) = £(a) + [D £(a)*h + D,f(a) k]t

(*)
» 2

£(a")hk + t
(a )h Dy, 2

f(a )h* +

£(a") k2
1,1t (@ 2Dy (a ) k“}5-

*
where a is some point on the line segment from a to a + tv.

We derive this formula from the single-variable form of

Taylor's theorem. Let g(t) = f(a+tv), i.e.,
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Let F(tv) denote the left side of this equation. We
will be concerned about the sign of F(tv) when> t is small,
because that sign will depend on whether f has a local maxi-
mum or a local minimum at a, or neither. -

Step 3. From now on, let v = (h,k) be a unit vector.
Consider the guadratic function

Q(v) = Q(h,k) = Ah? + 2Bhk + CkZ.

We shall determine what values Q takes as v varies over the
unit circle.
Case 1. 1If B2 - AC < 0, then we show that Q(v) has

the same sign as A,v for all unit vectors z.v

. Proof. When v = (1,0), then Q(v) = A; thus Q(v)
has the same sign as A 1in this case. Consider the continuous
function Q(cos t, sin t). As t ranges over the interval
[0,2m], the vector (cos t, sin t) fanges over all unit vectors
in V2. If this function takes on a value whose sign is differ-

ent from that of A, then by the intermediate-value theorem,

there must be a tO such that Q(cos to’ sin to) = 0. That is,
Q(h k) = 0

for some unit vector (ho,ko). Now if hO # 0, this means that

the number ko/ho is a real root of the equation

A + 2Bx + sz = 0.
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g(t) = f(ai + th, a., + tk).

2

We know that g(t) g(0) + g'(0)-t + g"(c)-t2/2! where ¢ is

between 0 and t. Calculating the derivatives of g gives

g'(t) = le(al+th,a2+tk)°h + sz(al+th,a2+tk)'k,
" — 2 . 2
g"(t) = (Dl,lf)h + (Dl,zf)hk + (Dz’lf)kh + (Dz,zf)k ’
from which formula (*) follows. Here g* = a + cv, where c is

between 0 and t.
Step 2. In the present case, the first partials of £

vanish at a, so that
2 2,.2
f(attv) - £(a) ~ {Ah® + 2Bhk + Ck“}t/2.

The only reason this is an approximation rather than an equality‘
is that the second partials are evaluated at the unknown point 5*
instead of at a. This matter will be disposed of by using
elementary epsilonics. Formally, we have the equation '

2 4 2Bhk + Ck?}

Zf(a+ty) - £(a)] = {an
t

(**)

+ [0y £(a")-aln? + 2(D; ,f(a")-BInk + (0, £ (%) ~C12.

' *
Note that the last three terms are small if a is close to

a, because the second partials are continuous.



But this equation has a real root only if 82 - AC > 0.

Similarly, if ko # 0, the number ho/kO is a real root of the

equation

AX2+2BX+C=O;

2

agaih we conclude that B® - AC > 0. Thus in either case we are

led to a contradiction.

2

Case 2. If B" - AC > 0, then we show that Q(v) takes

on both positive and negative values.

2

Proof. If A # 0, the equation Ax® + Bx + C = 0 has

two distinct real roots. Thus the equation. y = sz + 2Bx + C
represents a parabola that crosses the x-axis at two distinct
points. On the other hand, if A = 0, then B # 0 (since

B2 - AC > 0); in this case the equation y = sz + 2Bx + C
represents a line with non-zero slope. It follows that in

either case, there is a number ko for which
Ax~ + 2on + Cc<o,
and a number Xy for which

sz + 2Bx

1 1 + C > 0.

Let (ho,ko) be a unit vector with ho/ko = X and let (hl,kl)

o

be a unit vector with hl/kl = Xy. Then Q(ho,ko) < 0 and
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Step 4. We prove part (a) of the theorem. Assume

2 .
B® - AC > 0. Let v be a unit vector for which Q(ZO) > 0.

—O
Examining formula (**), we see that the expression
2[f(a+tv) - f(i)]/tz‘ approaches
+0 Q(v,) as t —> 0. Let

X =a+ tv and let t —> 0.

(3

Then X approaches a along the
straight line from a to a+yv,, and the expression
£(x) - £(a) 'approaches zero through positive values. On the
other hand, if vy is a poiﬁt at which Q(Xl) < 0, then the
same Argument shows that aé X approaches a along the straight
line from a to a + v,, the expression £(x) - f£(a) approaches

0 through negative values.

We conclude that £ has a saddle point at a.

Step 5. We prove parts (b) and (c) of the theorem.

Examining equation (**) once again. We know that IQ(X)l >0

for all unit vectors v. Then lb(z)[ has a positive minimum

m, as Vv ranges over all unit vectors. (Apply the extreme-

value theorem to the continuous function [Q(cos t, sin t)|, for

0 St < 2m.) Now choose S small enough that each of the three
square-bracketed expressions on the right side of (**) is less

than m/3 whenever g* is within § of a. Here we use continu-
ity of the second-order partials. If 0 < t < §, then 3* is on
the line from a to a + 6v; since v is a unit vector, then
the right side of (*) has the same sign as A whenever 0 < t < ¢.

If A > 0, this means that £f(x) - f(a) > 0 whenever
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0 < ]5—31 < 3, so f has a relative minimum at g.‘ If a<o,
then f£(x) - f(a) < 0 whenever 0 < |x-a| < §, so f has a rela-

tive maximum at a.
Por examples illustrating (d), see the exercises. [
Exercises

1. Show that the function x4 + y4 has a relative minimum

at the origin, while the function x4 - y4 has a saddle point
there. Conclude that the second-derivative test is inconclusive

if B% - AC

0.

2; Use Taylor's theorem to derive the second derivative
test for maxima and minima of a function f(x) of a single vari-
able. If f'(a) = £"(a) = 0 and £f"' (a) # 0, what can YOu say
about the existence of a relative ﬁaximum or minimum at £ at a?

3. Suppose f(x) has continuous derivatives of orders

a. Suppose

l,...,n+l near x

£'(a) £"(a) = ses = f(n)(a) = 0.

and f(n+l)(a) # 0. What can you say about the ekistence of a rela-
tive maximum or minimum of £ at a? Prove your answer correct.

4. (a) Suppose f(xl,xz) has continuous third-order
partials near a. Derive a third-order version of formula (*) of
the preceding theorem.

(b) Derive the general version of Taylor's theorem for
functions of two variables.

[The following "operator notation" is convenient

(th+kD2)fl§=i = hD,f(a) + kD,f(a),

171
n

2 _ .2 2 '
(th+kD2) f‘ﬁ?i = h"D.D,f(a) + thDlsz(g) + h D2D2f(i),

and similarly far (th+kD2)
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The extreme—value theorem and the small-span theorem.

The proofs of the extreme-value theorem and small-span
theorem for rectangles giveﬁ in Apostol arcsufficienfly con-
densed to cause some students difficulty. Here are the details.
We shall prove the theorems only for Rz, but the proofs go

through without difficulty in rR”

A rectangle Q in Rz is the Cartesian product of two

closed intervals [a,b] and [c,d];

Q = [a,b] x [c,d] = {(x,y) l a¢< x<b and ¢ ¢y ¢ d}.

The intervals [a,b] and [c,d] are called the component

intervals of Q. If

Pl = {xo,xl,...,xn}

is a partition of [a,b], and if

Py = {vgsvys--rvy}

is a partition of [c,d], then the cartesian product P, x P

1

is said to be a partition of Q. Since P1 partitions [a,b]

into n subintervals and P2 partitions [c,d] into m

2

subintervals, the partition P = P1 X P2 partitions Q 1into
mn subrectangles, namely the rectangles

[x.

1_1'.xi] X [yj_l’yj].
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34 ?7
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)
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d
Yo

Theorem (small-span theorem). Let f be a scalar function that

is continuous on the rectangle
Q = [a’b] X [C:d]

in R”. Then, given e > 0, there is a partition of Q such

that f is bounded on every subrectangle of the partition and
such that

the s of f in every subrectangle of the partition

)
[r1]
t=]

'is less than

Proof. For purposes of this proof, let us use the
following terminology: 1If Qo is any rectangle contained in
Q, 1let us say that a partition of QO is "e-nice" if f is
bounded on every subrectaqgle R of the partition and if the
span of f in every subrectangle of the partition is less than
€. We recall that the gpan of f in the set S is defined by
the equétion

spang f = sup{f(x)ll X € S} - inf{f(x) | x e s}.
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Recall also that if 54 is a subset of S, then

span f ¢ span_, f.

S S

1

To begin, we note the following elementary fact: Suppose

A = [agibgl x [cgidg]
is any rectangle contained in Q. Let us bisect the first com-
ponent interval [ao,bo] of Qo into two subintervals
I1 = [ao,p] and I2 = [p,bo], where p 1is the midpoint of
[ao,bo]. Similarly, let us bisect [co,doj into two subinter-
vals Jl and Jz. Then Q0 is written as the union of the
four rectahgles

I1 x J1 and I2 x J1 and I1 x Jz and I2 leZ.

Now if each of these rectangles has a partition that is eg-
nice, then we can put fhese partitions together to get a parti-
tion of QO that is eo—nice; The figure indicates the proof;

each of the subrectangles of the new partition is contained in a

subrectangle of one of the old partitions.
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Now we prove the theorem. We suppose the theorem is

false and derive a contradiction. That is, we assume that for

some €9 > 0, the rectangle Q has no partition that is €9~
nice.

Let us bisect each of the component intervals of Q,
writing Q as the union of four rectgngles. Not all of these

smaller rectangles have partitions that are eo—nice, for if
they did, then Q would have such a partition. Let Q1 be one
of these smaller rectangles, chosen so that Q1 does not have a
partition that is eo—nice.

Now we repeat the process. Bisect each component inter-
val of Q, into four smaller rectangles. At least one of these
smaller rectangles has no part;tion thaf is eo—nice; let Qz
denote one such.

Continuing similarly, we obtain a sequence of rectangles

Q, Q Q

10 Qe
none of which have partitions that are eo—nice.' Consider'the
left-hand end points of the first component interval of each of
these rectangles. Let s be their least upper bound. Simiiar—
ly, consider the left-hand end points of the second component
interval of each of these rectangles, and let At be their least
upper bound. Then the point (s,t) belongs to all of the rec-

tangles Q,Q,,Q

1 Qg0 -
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Now we use the fact that f is continuous at the point
(s,t). We choose a ball of radius r centered at (s,t) such
that the span of f in this ball is less than €g- Because the
rectangles Qm become arbitrarily small as m increases, énd
because they all contain the point (s,t), we can choose m
large enough that Qm lies within this ball.

Now we have a contradiction. Since Qm is contaiped in
the ball of radius r centered at (s,t), the span of f in
Qm is less than €o: But this implies that there is a parti-
tion of Qm that is eo—nice, namely the trivial partition!
Thus we have reached a contradiction. O

Corollary. Let f be a scalar function that is continu-

— — —————————— e————————— —— <o

ous on the rectangle Q. Then f lg bounded on Q.
Proo

f. Set e =1, and choose a partition of Q that

is e-nice. This partition divides Q into a certain number of
subrectangles, say Rl""’Rmn' ‘Now f 1is bounded on each of
these subrectangles, by hypothesis; say
[f(x)]| ¢ Mi for x e Ri'
Then if M = max{Ml,...,an}, we have
| E| ¢ M
for all x € Q. o

Theorem (extreme-value theorem). Let f be a scalar

- function that is continuous on the rectangle Q. Then there are

points X and Xy of Q such that
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£(xg) ¢ £(x) ¢ £(x)

Proof. We know f is bounded on Q; let
M = sup{f(x) | x € Q}.

We wish to show there is a point x of Q such that

1
f(x;) = M.
Suppose there is no such a point. Then the function
M - f(x) 1is continuous and positive on Q, so that the func-
tion

g(x) = m
is also continuous and positive on Q. By the preceding corol-
lary g 1is bounded on Q; let C be a positive constant such

that g(x) ¢ C for x € Q. Then

1
M =T(x) ¢C , or

f(x) < M - (1/C)
for all x in Q. Then M - (1/C) 1is an upper bound for the
set of values of f(x) fof X in Q, contradicting the fact
that M is the least upper bound for this set.
A similar argument proves the existence of a point x
of Q such that

f(xy) = inf{f(x) | x e Q}. o
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Exercises on line integrals

1. Find the centroid of a homogeneous wire in shape of the

parabolic arc

y = X for -1 ¢ x ¢ 1.

[Use a table of integrals if you wish.]

2. Let
“yitxj
f(x,y) = ——
x“+y°
on the set S consisting of all (x,y) = 0.
(a)  Show that szl = lez on S.
(b) Compute the line integral f f - da from (a,0) to
Cc

(—a,O) when C is the upper half of the circle x2 + yz = az,

Compute it when C is the lower half of the same circle.

3. Let f be as in problem 2. Let U be the set of all

(x,y) with x > 0. Find a potential function for f that is

defined in U. Bty Sk

L er—

P(x 3\—_-. J‘_ﬂ&& tobere C & the
) —_ - oSV
C —
(1,0)
4. Let £ be a continuous vector field defined in the open, connected
—’
subset S of R'. Suppose that f = V<{>1 and _f_=~3<f32 in S. Show

that <P1 - <?2 is a constant function. [Hint: Apply Thoerem 10.3.]
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Notes on double integrals.

(Read 11.1-11.5 of Apostol.)
Just as for the case of a single integral, we have the
following condition for the existence of a double integral:

Theorem 1 (Riemann condition). Suppose £ 1is defined on

Q = [a,b] X [c,d]. Then £ 1is integrable on Q if and only if

given any € > 0, there are step functions s and t with

s <f<t on Q, such that

e Il,e <

Let A be a number. If these step functions s and t satisfy

the further condition that

The proof is almost identical with the corresponding proof
for the single integral.

Using this condition, one can readily prove the three
basic properties--linearity, additivity, and comparison--for the

integral JJ f. We state them as follows:
Q

Theorem 2. (a) Suppose f and g are integrable on Q.

Then so is cf(x) + dg(x); furthermore,

([ cevapmeff cealfl s




(b) Let Q be subdivided into two rectangles Q

Q5. Then £ 1is integrable over Q if and only if it is

integrable over both Ql and QZ; furthermore,

Iloe= 1,

(¢) If £

N

D2

and

g on Q, and if f and g are integrable

over Q, then

I

N

Ilq =

To prove this theorem, one first verifies these results

for step functions (see 11.3), and then uses the Riemann condi-

tion to prove them for general integrable functions. The proofs

are very similar to those given for the single integral.
We give one of the proofs as an illustration. For

example, consider the formula

yeeeo =l [l

where f and g are integrable. We choose step functions
Sy tl’ t2 such that I
SfE<t and S, S g <ty

S1

on Q, and such that
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ij (tl - sl) < g/2 and JIQ (t2 - 52) < g/2.

We then find a single partition of Q relative to which all of
sl, Sy tl, t2 are step functions; then sy + Sy and tl + t2
are also step functions relative to this partition. Furthermore,

one adds the earlier inequalities to obtain

Sy + Sy < f +g< tl + t2.
Finally, we compute
JJ (t,+t,) - (s,+s,) = j[ (t,~s,) + JJ (th=s,) < €;
0 1 -2 172 0 171 0 2 72

this computationiuses the fact that linearity has already been
proved for step functions. Thus JJ (f + g) exists. To
Q

calculate this integral, we note that

Jom=llge=tly
Josa<llgo=ll e

by definition. Then

jJQ’(sl+sz) < JJQ»f + jJQ g < JJQ (£y+ty) s

here again we use the linearity of the double integral for step

functions. It follows from the second half of the Riemann
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condition that ij (f + g) must equal the number

s Jf e o

Up to this point, the development of the double integral
has been remarkably similar to the development of the single
integral. Now things begin to change. We have the following
basic questions to answer:

(1) Under what conditions does JJ f exist?
Q

(2) 1If JJ f exists, how can one evaluate it?

(3) 1Is thege a version of the substitution rule for double
integrals?

(4) What are the applications of the double integral?
We shall deal with questions (1), (2), and (4) now, postponing
question (3) until the next unit.

Let us tackle question (2) first. How can one evaluate
the integral if one knows it exists? The answer is that such
integrals can almost always be evaluated by repeated one-dimen-
sional integration} More precisely, one has the following theorem:

Theorem 3 (Fubini theorem). Let £ be defined and bounded

on a rectangle Q = [a,b] x [c,d], and assume that f is

integrable on Q. For each fixed vy in [c,d], assume that the

one-dimensional integral

b
A(y) = f f(x,y)dx
a

d
exists. Then the integral J "A(y)dy exists, and furthermore,

o]
d b ' ' ’
[' J f(x,y)dx| dy = JI f(x,y)dx dy. -
c |a Q |
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d
Proof. We need to show that j A(y)dy exists and equals

‘ c
the double integral Jf £.
-’ |
Choose step functions s(x,y) and tix,y), defined on

Q, such that s(x,y) < f(x,y) < t(x,y), and

[ on [] e

Q Q
This we can do because JIQ f exists. For convenience, choose
s and t so they are constant on the partition lines. (This
does not affect their double integrals.) Then the one-dimen-
sional integral

b
j s(x,y)dx
a

exists. [For, given fixed y in [c,d], the function s{x,y)
is either constant (if y is a partition point) or a step
function of x; hence it is integrable.] Now I claim that the

b
function S(y) = f s(x,y)dx 1is a step function cn the interval
a

¢ <y < d. For there are partitions Xgreeer Xy and yo,...;yn
of [a,b] and [c,d], respectively, such that s(x,y) is
constant on each open rectangle (xi_l,xi)vx (yj_l,yj). Let vy
and y be any two points of the interval (yj_l,yj). Then
s(x,¥) = s(x,y) holds for all x. (This is immediate if x is
in (xi_l,xi); if x 1is a partition point, it follows from
the fact that s is constant on the partition lines.) There-

fore
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b ~ b }
J s(x,7)dx = f s (x,7)dx.
a a

so it is a step func-

Hence S(y) is constant on (yj_l,yj),

tion.
A similar argument shows that the function

b
- T(y) = [ t(x,y)dx
- a

is a step function for c <y < 4.

Now since s < £ < t for all (x,¥), we have

b b b
f s(x,y)dx < [ f(x,y)dx g_f t(x,y)dx,
a a a

by the comparison theorem. (The middle inteéral exists by

hypothesis.) That is, for all y in [ec,d],

S(y) < A(y) < T(y).

Thus S and T are step functions lying beneath and above &,

respectively. Furthermore

[I s = fd S(y)dy and fj t = fd T(y)dy,
9 c c

Q

(see p. 356), so that
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4 4
f T (y)dy - f S(y)dy < .
C C

d

It follows that f

A(y)dy exists, by the Riemann condition.
c .

Now that we know A(y) 1is integrable, we can conclude

from an earlier inequality that

d d

A(y)dy < J T(y)dy;

d ‘ .
J S(y)dy <f
c

(o} c

that is,

[l o< [ awmar <[ -

But it is also true that

[e<lfe<]] =

by definition. Since the integrals of s and t are less than
d

€ apart, we conclude that f
c

A(y)dy and “;; f are within £
of each other. Because ¢ 1ig arbitrary, they must be equal.[j

With this theorem at hand, one can proceed to calculate
some specific double integrals. Several examples are worked out
in 11.7 and 11.8 of Apostol.

Now let us turn to the first of our basic questions, the
one concerning the existence of the double integral. We readily

prove the following:



Theorem 4. The integral fj f exists if f is
0 =R=-5tsS 1L

continuous on the rectanéle Q.

Proof. All one needs is the small-span theorem of p- C.Z-cl~
Given €', choose a partition of Q such that the span
of £ on each subrectangle of the partition is less than ¢'.

If Qij is a subrectangle, let

min £(x) on Qi t.. = max £(x) on Q...

Sij 3’ ij i3

L) - L < '. ¢ > o ) O i
Then tlJ slJ € Use the numbers le and tlJ to obtain

step functions s and t with s < £< t on Q. One then has
JI (t - s) <eg'(d=-c¢c)(b - a).
Q

This number equals ¢ if we begin the proof by setting
e' = ¢/(d-c) (b=a). O
In practice, this existence theorem is not nearly strong
enough for our purposes, either theoretical or practical. We
shall derive a theorem that is much stronger and more useful.
First, we need some definitions:

Definition. If Q = [a,b] x [c,d] 1is a rectangle, we

define the area of Q by the equation

area Q' = II 1.
Q

Of course, since 1 1is a step function, we can calculate

this integral directly as the product (d-c) (b-a).
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Additivity of ff implies that if we subdivide Q into

two rectangles Ql and QZ' then
area Q = area Ql + area QZ’

Applying this formula repeatedly, we see that if one has a parti-

tion of Q, then

area Q = Z.

. a .
i,3 rea Ql

jl

where the summation extends over all subrectangles of the partition.
It now follows that if A and Q are rectangles and

A CQ, then area A < area Q.

Définition. Let D be a subset of the plane. Then D is

said to have content zero if for every ¢ > 0, there is a finite

set of rectangles whose union contains D and the sum of whose
areas does not exceed ¢. |

Examples.

(1) A finite set has content zero.

(2) A horizontal line segment has content zero.

(3) A vertical line segment has content zero.

(4) A subset of‘a set of content zero has content zero.

(5) A finite union of sets of content zero has content zero.

(6) The graph of a continuous function

Y = ¢(x); as<xs<b

has content zero.
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(7) The graph of a continuous function

has content zero.

Most of these statements are trivial to prove; only the
last two require some care. TLet us prove (6). Let e' > 0.
Given the continuous function ¢, 1let us use the small-

span theorem for functions of a single variable to choose a

,3=<¢(X)

partition a = X < X < ... < Xn = b of [a,b] such that the

span of ¢ on each subinterval is less than €'. Consider the

rectangles
Ai = [xi‘l'xi] X [¢(xi_l) - E'r¢(xi_l) + e']

for i=1,...,n. They cover the graph of ¢, Dbecause
[¢(x) - ¢(xi_l)| < &' whenever x is in the interval [xi_l,xi].

The total area of the rectangles A,

i ©€quals

) (x;-%x; _1)2e' = 2¢'(b - a).
i=1
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This number equals € if we begin the proof by setting

e' = ¢/2(b-a).

We now prove an elementary fact about sets of content zero:

Lemma 5. Let Q be a rectangle. Let D be a subset of

Q that has content zero. Given e > 0, there is a partition of

Q such that those subrectangles of the partition that contain

points of D have total area less than «.

Note that this lemma does not state merely that D 1is
contained in the union of finitely many subrectangles of the par-
tition having total area less than €, but that the sum of the
areas of all the subrectangles that contain points of D is less
than €. The following figure illustrates the distinction; D
is contained ih the union of two subrectangles, but there are

seven subrectangles that contain points of D.

N ' | N

id——_- v

D .
Proof. First, choose finitely many rectangles
Al,...,An of total area less than €/2 whose union contains D.
"Expand" each one slightly. That is, for each i, choose a
rectangle Ai whose interior contains Ai’ such that the area of

Ai is no more than twice that of Ai' Then the union of the
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sets Int Ai contains D, and the rectangles Ai have total
area less than €. Of course, the rectangle Ai‘ may extend
outside Q, so let A! denote the rectangle that is the
intersection of Ai and Q. Thgn the rectangles A; also
have total area less than «¢.

Now use the end points of the component intervals of the
rectangles A{ to define a partition P of the rectangle Q.

See the figure.

! | |
_1._._-‘

I
= T,

A, T

1
Q | . \.-A:I

We show that this is our desired partition.

Note that by construction, the rectangle Aﬁ is partitioned
by P, so that it is a union 6f subrectangles Qij of P.

Now if a subrectangle Qij contains a pqint of D, then
it contains a point of 1Int Ai for some k, so that it actually

lies in Ai and hence in Aﬂ. Suppose we let B denote the union

of all the subrectangles Qij that contain points of D; and let
A Dbe the union of the rectangles Ai,...,Ag. Then B C A,
z”’_A

3

===

0
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It follows that

.. S
area Q; ) area Q

,.C J
Qlj B Qich

3

Now on the other hand, by additivity of area for rectangles,

Q.. = area A'.
" 1] k
QijCAk

It follows that

n
) Q.. < ] area A".
Q;5a T k=1 K

This last inequality is in general strict, because some sub-
rectangles Qij belong to more than one rectangle Aﬁ, so
their areas are counted more than once in the sum on the right
side of the inequality.

It follows that

) area Q;5 < &,

as desired. O

Now we prove our basic theorem on existence of the double
integral IJ £.
: Q

Theorem 6. If ¢ ig bounded on Q, and ig continuous

on 'Q except on a set of content zero, then JJ f exists.
2 Satept 0 SaLSTS
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Proof. Step 1. We prove a preliminary result:
Suppose that given ¢ > 0, there exist functions g and h that are integrable over Q, such
that
g(x) < f(x) < h(x) for xin Q

fgr-flgee

We prove this result as follows: Because h and g are integrable, we can find step

and

Then f is integrable over Q.

functions 8> 89» by tq such that

slgggtl and s25h$t2,

”Q tl—”Q 5, < ¢ and ”Q tz-”Q oy < €.

Consider the step functions 81 and t,. We know that

and such that

s, <g<fChty
50 8 18 beneath f, and t,, is above f. Furthermore, because the integral of g is between

the integrals of s, and of t;, we know that

I e[ s<e

| e Ya
Similarly, ” t,—[[ h<e

Q 7Q

If we add these inequalities and the inequality
” h - [ g < ¢

Q Q

we have

[galgs <

Since ¢ is arbitrary, the Riemann condition is satisfied, so f is integrable over Q.
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Step 2. Now we prove the theorem. Let D be a set of zero content containing the
discontinuities of f. Choose M so that |f(x)| < M for x in Q; then given € > 0, set ¢’ =
€/2M. Choose a partition P of Q such that those subrectangles that contain points of D

have total area less than e’. (Here we use the preceding lemma.)

D

T
» -
T
Tt

I

LQL_‘,

Now we define functions g and h such that g < £ < h on Q. If Qij is one of the

subrectangles that does not contain a point of D, set
g(x) = £(x) = h(x)
forx € Qi i Do this for each such subrectangle. Then for any other x in Q, set
g(x)=-M and h(x)=M.
Then g<f<honQ.

Now g is integrable over each subrectangle Qij, that does not contain a pdint of D,
since it equals the continuous function f there. And g is integrable over each sub-
rectangle Qi j that does contain a point of D, because it is a step function on such a
subrectangle. (It is constant on the interior of Q; j.) The additivity property of the
integral now implies that g is integrable over Q.

Similarly, h is integrable over Q. Using additivity, we compute the integral

”Q (h—g) = }: ”Q (h—g) =2M 2 (area Q; j that contain points of D)

1)
< 2Me’ = e.
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Thus the conditions of Step 1 hold, and f is integrable over Q. o

Theorem 7. Suppose f is bounded on Q, and f equals 0 except on a set D of content

zero. Then ” f exists and equals zero

Q
Proof. We apply Step 2 of the preceding proof to the function f.

Choose M so that |f(x)] < M for x in Q; given € > 0, set ¢/ = ¢/2M. Choose a
partition P such that those subrectangles that contain points of D have total area less
than €’.

Define functions g and h as follows: If Q j is one of the subrectangles that does not
gontain a point of D, set g(x) = f(x) = 0 and h(x) = f(x) = 0 on Q; i Do this for each
such subrectangle. For any other x in Q, set

g(x) =-M and h(x)=M.
Theng<f<honQ.
Now g and h are step functions on Q, because they are constant on the interior of

each subrectangle Q; § We compute
” h=M (2 (area Q.. that contain points of D))
Q !
< 2Me’ = €/2.
Similarly,
” g > —-Me’ = —¢/2.
Q
Hence ” (h—g) < ¢, so that fis integrable over Q. Furthermore,

-e/2<”Q gS”Q fg”Q h < €/2.

Since e is arbitrary, ” f=0. o

s, and if g is a bounded function that equals f except on a

Corollary 8 ” fed

set o_f content zero, then J g exists and equals ” f.
Q



D17
Proof. We write g = f + (g-f). Now f is integrable

by hypothesis, and g - f is integrable by the preceding

corollary. Then g 1is integrable and

”Qg= HQ f*fo (g-£) =”Q £.0

Double integrals extended over more general regions.

(Read section 11.12 of Apostol.) 1In this section,
Apostol defines ffs f for a function f defined on a bounded
set S, Dbut then he quickly restricts himself to the special
case where S is a region of Types I or II. We discuss here
the general case. |

First, we prove the following basic existence theorem:

Theorem 9. Let S be a bounded set in the plane. If
Brended on S and

Bd S has content zero, and if £ lslcontlnuous at each point

of Int S, then ffs f exists.

Proof, Let Q be a rectangle containing S, As usual,
let £ equal f on S, and let f equal 0 outside S, Then
?J is continuous at each poxnt X9 of the interior of S (because
it equals f 1in an open ball about X0 and f 1is continuous
at xo). The function f. is also continuous at each point X1
of the exterior of_ S, because it equals zero on an open ball

about Xqe The only points where ?' can fail to be continuous

are points of the boundary of S, and this set, by assumption,

has content zero. Hence fﬁq ?' exists, C]
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Note: Adjoining or deleting boundary points of §
changes the value of f only on a set of content zero, so that

value of ffs f remains unchanged. Thus ffs £ £,

- ffInt S
for instance.

Let us remark on a more general existence theorem than
that stated in Theorem 9. If S 1is a boﬁnded set, and
if Bd S has content zero, and if f is continuous on Int S

1 ]
except on a set D of content zero, then ffs f exists. For

in this case the discontinuities of the extended function E
lie in the union of the sets Bd S and D, and this set has
content zero because both Bd S and D do.

There are more general existence theorems even than this,

but we shall not consider them.

Now we note that the basic properties of the double
integral hold also for this extended integral:

Theorem 10. Let S be a bounded set in the plane. One

has the following properties:

(a) Linearity.
” cf+dg=c”f+d”g;
s 8 s

the left side exists if the right side does.

(b)  Comparison. If f < g on the set S, then

[es]fe

S

provided both integrals exist.
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(c) Additivity. Let S =8, U SZ' If s, N S, has content

zero, then

provided the right side exists.

Proof. (a) Given £, g defined on S, let E, 5 equal
£, g, respectively, on S and equal 0 otherwise. Then
cf + da equals cf + dg on S and 0 otherwise. Let Q

be a rectangle containinq' S. We know that

from this linearity follows.

(b) Similarly, if £ < g, then £ < 5, from which we

conclude that

[[e=J[2< [[5- [«

S Q Q ] ‘
(c) Let Q be a rectangle containing S. Let fl
equal f on Sl’ and équal 0 elsewhere. Let f2 equal f
on S,, and equal 0 elsewhere. Let f3 equal £ on s,

and equal 0 elsewhere. Consider the function
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it equals £ on the set Sl N 52, and equals zero elsewhere.
Because S; N S, has content zero, fo £, exists and equals

Zero. Now

or

How can one evaluate ffs f when S 1is a general
region? The computation is easy when S is a regién of type
I or IT and £ is continuous on the interior of S; one
evaluates ffs f by iterated integration. This result is
proved on p. 367 of Apostol.

Using additivity, one can also evaluate ffs f for
many other régions as well. For example, to integrate a

continuous function f over the region S pictured, one can

50
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break it-up as indicated into two regions Sy and S, that
intersect in a set of content zero. Since S, is of type I

and S5 is of type II, we can compute the integrals ffs £
1
and ffs f by iterated integration. We add the results to

2
obtain ffs £.

Area.

We can now construct a rigorous theory of area. We
already have defined the area of the rectangle Q = [a,b] x [c,d]

by the equation

area Q = ff 1.
Q

We use this same equation for the general definition.

Definition. Let S be a bounded set in the plane. We say that S

is Jordan-measurable if Sf; 1 exists; in this case, we define

area S = JJ 1.
S

Note that if Bd S has content zero, then S 1is Jordan-measurable, by

by Theorem 9. The converse also holds; the proof is left as an exercise.

The area function has the following properties:

Jordan-
Theorem 11. Let S and T ggwreasurable sets in the

plane.

(1) (Monotonicity). If S C T, then area S < area T.

(2) (Positivity). Area S > 0, and equality holds if

and only if S has content zero.
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(3) (Additivity) If S N T is a set of content zero,

then S YU T is 'Jordan-measurable and

area(SVYT) = area S + area T.

(4) Area S = Area(Int S) = Area(SUBA S).

Proof. Let Q be a rectangle containing S and T.

" Let

1S(x) =1 for x € S

Define 1T similarly.

(1) If S 1is contained in T, then is(x) < lT(x).

Then by the comparison theorem,

Il
—_—
—

=

=

Il

L

H

o

[+

=

s [f e 0], 10 [

(2) Since 0 <1, we have by the comparison theorem,

0 = J[ 0 < Jj 1l = area S,
S S

L]

for all S. If S has content zero, then [[ 1= [ 45=0,
S Q

by Corollary 7.
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Conversely, suppose ffs 1 = 0. Then fo i = 0.
Given € > 0, there must be a step function -t > 18 defined
on Q such that fo t <e. Let P be a partition relative
to which t 1is a step function. Now if a subrectangle Qij
of this partition contains a point of S in its interior,
then the value of t on this subrectangle must be at least} 1.
Thus these subrectangles have total area less than e. Now S
is contained in the union of these subrectangles (of total area
less than €) and the partition lines. Thus S has content
zero.,

(3) Because ffs 1 and ffT 1 exist and S N T has
content zero, it follows from additivity that [f 1 exists

SUT
and equals [ L1+ [[ 1.
S T

(4) Since the part of S not in Int S 1lies in B4 S,

it has content zero. Then additivity implies that

area S area(Int S) + area(S - Int S)

area(Int S).

A similar remark shows that

area(SUVBA4 S) area(Int S) + area(Bd 8S)

area(Int S). O
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Remark. Let S be a bounded set in the plane. A
direct way of defining the area of S, without developing
integration theory, is as follows: Let Q be a rectangle con-
taining S.

Given a partition P of Q, let a(P) denote the total
area of all subrectangles of P that are contained in S, and
let A(P) denote the total area of all subrectangles of P that

contain points of S. Define the inner area of S be the supremum

A(P)
§% N N NN By XY
;‘\ r//{ . /: \l S a.(P)
N 7 ] V7R
AN N AT R
N /Y, kLA N
NI 07070 4 \ Y Ay 7 PR
\ L/ V/AX Nl 794 AR AN
N e _’,y/ \i N :: \2\\
N S INRNRN NN
of the numbers a(P), as P ranges over all partitions of Q;

and define the outer area of § to be the infemum of the numbers

A(P). 1If the inner area and outer area of S are equal, their

common value is called the area of s,
We leave it as a (not too difficult) exerc1se to show that

this deflnltlon of area is the same as the one we have given.

Remark. There is just one fact that remains to be proved
about our notion of area. We would certainly wish it to be true
that if two sets S and T in the plane are "congruent" in the sense

of elementary geometry, then their areas are the same. This fact is
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not immediate from the definition of area, for we used rectangles
with sides parallel to the coordinate axes.to form the partitions
on which we based our notion of "integral", and hence of "area".

It is not immediate, for instance, that the rectangles S and T

pictured below have the same area, for the area of T 1is defined

(1)
(05) (5,5

- (34) .
S T (#,3)

(0)0) CS-JO) _ » (o)o)

by approximating T by'rectangles with vertical and horizontal
sides. [Of course, we can write equations for the curveé bound-
ing T and computé its area by integration, if we wish. ]

Proof of the invariance of area under "congruence" will
have to wait until we study the problem of change of variables

in a double integral.
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Exercises

1. Show that if st 1 exists, then Bd S hzes content zero.

(Hint: Choose Q so that S<Q. Since f&lls exists , there are functions
S and t that are step functions relative to a partition P of Q, such
that s € lg <t orn Q and g&z (t - s) <% . Show that the subrectangles
determined by P trat contain points of S hzve total volume less than €. ]
2. (a) Let S and T be bounded subsets of R2 . Show that
Bd (SUT) € (Bd SVBd T ). Give an example where equality does not hold .
(k) Show that if S and T are Jordan-measurable, then so are

SUT and SnT , and furthermore

area(SvT) = area S + area T - area (SAnT).

Express in terms of iterated integrals the double integral

JJ xzyz, where S is the bounded portion of the first
S

quadrant lying between the curves xy = 1 and xy = 2 and the
lines y = x and y = 4x. (Do not evaluate the integrals.)
A solid is bounded above by the surface 2z = x2 - yz. below

by the xy-plane, and by the plane x = 2. Make a sketch;

express its volume as an integral; and find the volume.

5. Express in terms of iterated integrals the volume of the region
in the first octant of R3 bcunded by: (a) The surfaces z = xy and
z=0 ard x+ 2y + 2z =1. (b) The surfaces z =xy and z =0 and

x+2y -z =1,
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Let Q denote the rectangle [0,1] x [0,1] in the following exercises.

®(a) Let f(xy) = 1/(y—x) if x#y,
flx,y)=0 if x=y.

Does ”Q f exist?
(b) Let g(x,y) = sin (1/(y—x)) if x ¢y,
g(x,y) =0 if x=y.

Does ” g exist?
Q

@Let f(x,y) = 1if x = 1/2 and y is rational,

f(x,y) = 0 otherwise

1
Show that ” f exists but J f(x,y)dy fails to exist when x = 1/2.
0

Q

Let f(x,y) = 1 if (x,y) has the form (a/p,b/p),

where a and b are integers and p is prime,

f(x,y) = 0 otherwise.

1.1
Show that J J f(x,y)dy dx exists but ” f does not.
070 Q
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GREEN'S THEOREM AND ITS APPLICATIONS

The discussion in 11.19 - 11.27 of Apostol is not complete
nor enﬁirely rigorous, as the author himself points out. We
give here a rigorous treatment.

Green's Theorem in the Plane

We already know what is meant by saying that a region in
the plane is of Type I or of Type II or that it is of both
types'simultaneously. Apostol proves Green's Theorem for
a region that is of both types. Such a region R can be

described in two different ways, as follows:

&F .

r=¥, ()
Y= 4,00 o
[ | ]
a y.
Rt a<x<b R: c<y < d
¢, (x) <y < 9, (x) v, (¥) < x < by (¥)

The author's proof is complete and rigorous except for one gap,

which arises from his use of the intuitive notion of "counter-

clockwise",
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Specifically, what he does is the following: For the first

part of the proof he orients the boundary C of R

(*)

By increasing
By increasing
By decreasing

By decreasing

Then in the second part

(**)

By decreasing
By increasing
By increasing

By decreasing

X,
Y
X,

Y

of

Y

X,

Y

Xy

on the curve y =

on the line segment x

on the curve y = ¢2(x)

on the line segment x

the proof, he orients

on the curve x = wl(y)

on

on the curve x = wz(y)

on

the line segment y

the

line segment y

¢l(x)

as follows:

-

-.

~e

.

and

as follows:

(The latter line segment collapses to a single point in the pre-

ceding figure.)

The crucial question is:

How does one know these two

orientations of C are the same?

One can in fact see that these two orientations are the

same, by simply analyzing a bit more carefully what one means

by a region of Typeé I and II.

Specifically, such a region can be described by four

monotonic functions:



4 = oy (x);
" v al(x) aix_<_xl,
Y=OL2(X)>; X, < X < b,

y = a3(x); a < x < X34

y = a4(x); X, i X < b,

’l &J wrere a(_l and 044 are strictly
2
A, , ( : decreasing and A, and c(3 are
; t | ,
a 3 X’ X:.‘ 'g.. strlctly mcreasmg.v
MT«»LW
LIXSX,Sh o 45X, <%y 3 S\ 7/% o
o (2) € dy (2) B (%) = o, 2 (%) ord 4 (%)) = dy (x,)

V u bmm.z.a/tj;vw_

[Some or all of the a; can be missing, of

course. Here are pictures of typical such regions:]

The curves.al and Py along with the line segment Y = ¢, are

used to define the curve y = ¢l(x) that bounds the region on
the bottom. Similarly, aq and a, and y = 4 define the curve

y = ¢2(x) that bounds the region on the top.
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Similarly, the inverse functions to 2y and A3y along with
X = a, combine to define the curve x = ¥, (y) that bounds the
region on the left; and the inverse functions to @, and Ay
along with x = b, define the curve x = wz(y).

Now one can choose a direction on the bounding curve ¢ by
simply directing each of these eight curves as indicated in the
figure, and check that this is the same as the directions

specified in (*) and (**), {?ormally, one directs these curves

-as follows:

increasing x

= decreasing y on y = a; (x)
increasing x on y = ¢
increasing x = increasing y on y = az(x)
increasing y ' on X = b
decreasing x = increasing y on y = a4(x)
decreasing x ony =4
decreasing x = decreasing y on y = a3(x)
decreasing y on x = a,]

We make the following definition:

Definition. Let R be an open set in the plane bounded by

a simple closed Piecewise-differentiable curve C. We say that

R is a Green's region if it is possible to choose a direction

on C so that the equation

$ Pax+ aay = [ (32 - 2 axey
c R ’

holds for every continuously differentiable vector field
P(X'Y)I + Q(x,y)g that is defined in an open set containing

R and C.
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. The direction on C that makes this equation correct is

called the counterclockwise direction, or the counterclockwise

Orientation, of C.

In these terms, Theorem 11.10 of Apostol can be restated

as follows:

Theorem 1. Let R be bounded by a simple closed piece-
wise-differentiable curve. If R ii of Types I and II, then R

is a Green's region.

As the following figure illustrates, almost any region R
you are likely to draw can be shown to be a Green's region by
repeated application of this theorem. 1In sucﬁ a case, the

'counterclockwise direction on C is by definition the one for
which Green's theorem holds. For example, the region R is a
Green's region, and the counterclockwise orientation of its
boundary C is as indicated. The figure on the right indicates
the proof that it is a Green's region; each of R and R

1 2
is of Types I and II.

Definition. Let R be a bounded region in the plane

whose boundary is the union of the disjoint piecewise-differ-
entiable simple closed curves Cl, ceey Cn' We call R a

Jeneralized Green's regibn if it is possible to direct the

curves Cl, ceey Cn so that the equation
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} dxdy

a»
o)

Q)

Pdx + Qdy = (29 _
Cy+Cobua *C @y = ||z |3x

1 72 b4

holds for every continuously differentiable vector field
PI + Qf defined in an open set about R and C.

Once again, every such region you are likely to draw can
be shown to be a generalized Green's region by several appli-
cations of Theorem 1. For example, the region R pictured

generalized '
is aAGreen's region if its boundary is directed as indicated.
The proof is indicated in the figure on the right. One applies

Theorem 1 to each of the 8 regions pictured and adds the results

together.

Definition. Let C be a piecewise—differentiable curve in the plane parametrized by

. the function at) = (x(t),y(t)). The vector T = (x’(t),y’(t)) /lla’ (t)|| is the unit tangent
vector to C. The vector

n = (y’ (t),—=x(£))/lla’ (W)l

is called the unit negative normal to C.

m

—

l’f

If C is a simple closed curve oriented counterclockwise, then n is the "outward normal"

to C.



E7

- -
@ Iff=Pi + Qj is a continuously differentiable vector field defined in an open
set containing C, then the integral J (f-n)dS is well—defined; show that it equals the
C

line integral
J  ~Qdx+Pay

@ Show that if C bounds a region R that is a Green’s region, thenqs (f-n)dsS =
C
oP
IJy (5% + )exar

[Remark. If f is the velocity of a fluid, then J (f-n)dS is the area of fluid flowing
C

outward through C in unit time. Thus 6P/dx + 8Q/dy measures the rate of expansion

of the fluid, per unit area. It is called the divergence of f.]

Definition. Let ¢ be a scalar field (continuously differentiable) defined on C. If x

is a point of C, then ¢’(x;n) is the directional derivative of ¢ in the direction of n. Itis

-}

equal to Vé(x)-n, of course. Physicists and engineers use the (lousy) notation -gg to
denote this directional derivative.
@ Let R be a Green’s region bounded by C. Let f and g be scalar fields (with

continuous first and second partials) in an open set about R and C.

(2) Show (EI)C % 45 = U v2g dx dy
R

where V2g = azg/@x2 + 32g/6y2.

(b) Show
EI)C £ %845 = ”R (7% + ¥t - Vg)dx dy.

(c) 7% =0 = 7%, show

qSC £ %8 g5 =q’>c_g Uy

These equations are important in applied math and classical physics. A function f with -
vt = 0 is said to be harmonic. Such functions arise in physics: In a region free of
charge, electrostatic potential is harmonic; for a body in temperature equilibrium, the

temperature function is harmonic.
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Conditions Under Which ﬁf *lQE.EE.i Gradient.

Let £ = PL + 03 be a continuously differentiable vector
field defined on an open set S in the plane, such that |
BP/ay = 3Q/3x on S. In generzl, we kncw that £ need not be
a gradient on S. We do know that £ will be a gradient if s
is convex (or even if S is star-convex). We seek to extend
this result to a more general class of plane sets.

This more general class may be infqrmally described as
consisting of those regions in the plane that have no "holes".

For example, the region Sl inside a simple closed curve C1 has

k_’—_\ has a hole

no holes, nor does the region S2 obtained from the plane by

deleting the non-negative x-axis. On the other hand, the
region S3 consisting of the poihts inside Cy and outside
C3 has a hole, and so does the region S4 obtained from the
plane by deleting the origin.

Needless to say, we must make this condition more precise
if we are to prove a theorem about it. This task turns out
to be surprisingly difficult.

We begin by proving some facts about the geometry of the

plane.
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Definition. A stairstep curve C in the plane is a curve

that is made ﬁp of finitely many horizontal and vertical line
segments.

For such a curve C, we can choose a rectangle Q whose
interior contains C. Then by using the coordinates of the end
points of the line segments of the curve C as partition points,
‘we can construct a partition of Q such that C is made up
entirely of edges of subrectangles of this partition. This

process is illustrated in the following figure:




£10

Theorem 2, (The Jordan curve theorem for stairstep curves),

Let C be a simple closed stairstep curve in the plane. Then the

complement of C can be written as the union of two disjoint

open sets. One of these sets is bounded and the other is

unbounded. Each of them has C as its boundary.

Proof. Choose a rectangle Q whose interior contains C,
and a partition of Q, say Xy < K] < een ¥ X, and Yo < Yy < oo < Y
such that C is made up of edges of subrectangles of this partition.

'§Ega l. We begin by marking each of the rectangles in

the partition + or - by the following rule:

Consider the rectangles in the iEE "column" beginning with
the bottom one. Mark the bottom one with +. In general, if a
given rectangle is marked with + or -, mark the one just above
it with the Same sign if their common edge does not lie in C,
and with the opposite sign if this edge does lie in C. Repeat
this process for each column of rectangles. In the following

figure, we have marked the rectangles in columns 1,3, and 6,

to illustrate the process.

-+ ~+ +
+ - +
ym = -
+ - +
+ - -
+ + +

Note that the rectangles in the bottom row are always
marked +, and so are those in the first and last columns,

(since C does not touch the boundary of Q ).
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Step 2. We prove the following: If two subrectangles

f the partition have an edge in common, then they have opposite

signs if that edge i in C, and they have the same sign if that

——

edge is not ig C.

This result holds by construction for the horizontal edges.
We prove it hélds for the vertical edges, by induction.

It is true for each of the lowest vertical edges, those
of the form xix[yo,yl]. (For no such edge is in C, and the
bottom rectangles are all marked +.) Supposing now it is true
for the rectangles in row j - 1, we prove it true for rectangles

in row j. There are 16 cases to consider ('), of which we

illustrate 8: 9 q
2 . .
/ /
v 4
+ | + + |+ + |+
0) (2) () R
+ | 4 + - - l
/ 1 /1. N 7[?
] E] R
(5) (6) (7)
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(The other eight are obtained from these by changing all the signs.)

We know in each case, by construction, whether the two horizontal edges

are in C, and we know from the induction hypothesis whether the lower
vectical edge is in C. Those edges that we know are in C are marked
heavily in the figure. We seek to determine whether the upper vertical

edge (marked "?") is in C or not. We use the fact that C 1is a
simple closed curve, which implies in particular that

each vertex in C lies on exactly two edges in C. 1In case (1),
this means that the upper vertical edge is not in C, for
otherwisé the middle vertex would be on only one edge of C.
Similarly, in cases (25, (3), and (4), the'upper vertical edge
is not in C, for otherwise the middle vertex would lie on
three edges of C.

Similar reasoning shows that in cases (5), (6), and (7)
the upper vertical edge must lie in C, and it shows that
case (8) cannot occur.

Thus Step 2 is proved in these 8 cases. The other 8
are symmetric to these, so the same proof applies.

Step 3. It follows from Step 2 that the top row of
rectangles is marked +, since the upper left and upper right
rectangles are marked +, and C does not touch the boundary of Q.

§E§E 4. We divide all of the complement of C into two
sets U and V as follows. Into U we put the interiors of allA
rectangles marked -, and into V we put the interiors of all
rectangles marked +. We also put into V all points of the
plane lying outside and on the bouﬁdary of Q. We still have
to decide where to put the edges and vertices of the partition

that do not lie in C.
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Consider first an edge lying interiqr to Q. If it does
not lie in the curve C, then both its adjacent rectangles lie
in U or both lie in V (by Step 2); put this (open) edge in
U or in V accardingly. Finally, consider a vertex v that lies
interior to Q. If it is not on the curve C, then case (1) of
the preceding eight cases (or the case with opposite signs)
holds. Thén all four of the. adjacent rectangles are in U or
all four are in V; put v into U or V accordingly.

It is immediately clear from the construction that U and V
are open sets; any point of U or V (whether it is interior to
a subrectangle, or on an edge, or is a vertex) lies in an open
ball contained entirely in U or V. It is also immediate that
U is bounded and V is unbounded. Furthermore, C is the common
boundary of U and V, because for each edge lying in C, one of |
the adjacent’ rectangles is marked + and the other is marked -,
by Step 2. d |

Definition. Let C be a simple closed stairstep curve in

the plane. The bounded open set U constructed in the preceding

proof is called the inner region of C, or the region inside C.

It is true that U and V are connected, but the proof is difficult.

We shall not need this fact.

Definition. Let S be an open connected set in the plane.

Then S -is called simply connected, if, for every simple closed

stairstep curve C which lies in S, the inner region of C is

also a subset of S.
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Theorem 3. If U is the region inside a simple closed

Stairstep curve C, then U is a Green's region.

Proof. Choose a partition of a rectangle Q enclosing U
such that C consists entirely of edges of subrectangles of
the partition. For each subrectangle Qij of this partition

lying in U, it is ‘true that

f PAx + Qdy = f f [32 _ B_P] dxdy
c 0 X oy
ij ij €

if Cij is the boundary of Qij’ traversed in a counterclockwise
direction. (For Qij is a type I-II region). Now each edge of
the partition lying in C appears in only one of these curves
cij' and each edge of the partition not lying in C appears in
either none oﬁ the cij' or it appears in two of the Cij with

oppositely directed arrows, as indicated:

If we sum over all subrectangles Qij in U, we thus obtain

the equation

Pdx + Qdy = JJ [%% - %g) dxdy.

I(line segments in C) U
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The only question is whether the directions we have thus given
to the line segments lying in C combine to give an orientation
6f C. That they do is proved by examining the possible cases.
Seven of them are as follows; the other seven are opposite

to them.

7
%7

2
G

/,«r

These diagrams show that for each vertex v of the partition

N

2

\

NN
N
N

such that v is on the curve C, v is the initial point of one
of the two line segments of C touching it, and the final

point of the other. U]

Theorem 4. Let S be an open set in the plane such that

every pair of points of S can be joined by a stairstep curve

in S. Let

£(x,y) = P(x,y)1 + Q(x,y)J

be a vector field that is continuously differentiable in s,

such tha

P _ 20
T odx

Y

on all of S. (a) If S is simply connected , then £ is a gradient i

S. (b) If S is not simply connected, then f may or may not be a gradient i
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Proof. The proof of (b) is left as an exercise. We prove (a) here.
Assume that S is Ssimply connascted.

Step 1. We show that

| § Pdx + Qdy = 0
o

for every simple closed stairstep curve C lying in s,

)

We know that the region U inside C is a Green's region.
We also know that the region U lijes entirely within §. (For
if there were a point p of U that is not in S, then C
encircles a point p not.in S, so that S has a hole at p.
This contradicts the fact that s is simply connected.) There-

fore the equation 23Q/3x = dP/3y holds on all of U; we there-

fore conclude that

=1 (29 _ 2& =
fc Pdx + Qdy -JI;[SX Y]dxdy_ 0,

for some orientation of C (and hence for both orientations of

c).

SteE 2. We show that if

§ Pdx + Qdy = 0
c

for every simple closed stairstep curve in S, then the same

equation holds for every stairstep curve in §.
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Assume C consists of the edges of subrectangles.

in a partition of some rectangle that contains ¢, as usual,

We proceed by induction on the number of vertices on the

curve C. Consider the vertices of C in order:

VarVesees ,V_,v..
0’71’ "n’'’0

Now C cannot have only one vertex. If it has only two, then

C is a path going from Vs to vy and then back to Vor The line

integral vanishes

in this case.

Now suppose the theorem true for curves with fewer than n
vertices. Let C have n vertices. 1If ¢ is a simple curve, we
are through. Otherwise, let Vi be the first vertex in this
sequence that equals some earlier vertex ] for i < k. We
cannot have Ve = Vg-pr for then Vk-1Vx Would not be a line
segment,

If Yk = Vg.gr then the curve contains the line segment
Vi-2Vkx-1+ followed by the same line segment in reverse order.

Then the integral from Vk-a to Vi-1 and the integral from

LI r—%r—"‘ NZf=Qi-L

A~

SR

N

es s =
<
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Vk-i to vk are negatives pf eaéh other. We can délete Vk_l
from the sequence of vertices without changing the value of

the integral. We have a closed curve remaining with fewer

line segments than before, and the induction hypothesis
applies.

If i < k-2, then we can consider the closed curve with
‘vertices Vi vi+l""’vk’ This is a simple c;osed curve, since
all its vertices are distinct, so the integral around it is
2ero, by Step l. Therefore the value of the integral
fC Pdx + Qdy is not changed if we delete this part of C, i.e.,

if we delete the vertices VireessV,_, from the sequence. Then

the induction hypothesis applies.

Example. 1In the following case,

N

R - DI

> N
4 7
i b r !
A
et /‘?_v‘ - & / \/ 2
i' ? N 5' Y
> ".l r~r=7 /‘L \ }\ } AL
T V7 3' 1 Y
ﬁ—f < + 1 : : 1Tv: -: -~ /K .
f,, ! Y K
M MRmaas tma s & S n
-
T’ 2
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the first vertex at which the curve touches a vertex already
touched is the poxnt 9. One considers the 51mple closed cross-
hatched curve, the integral around which is zero. Deleting this
curve, one has a curve remaining consisting of fewer line seg-
ments. You can continue the process uhtil You have a simple

closed curve remaining.

Step 3. We show that if Cl and C2 are any two stairstep

curves in S from p to g, then

fcl Pdx + Qdy = [CZ Pdx + Qdy.

This follows by the usual argument. If -C2 denotes C2 with
the reversed direction, then C = Cl + (-Cz) in a closed stairstep

curve. We have
jC-fC=IC+[-C2=¢C°

This last integral vanishes, by Step 2.
Step 4. Now we prove the theorem. Let a be a fixed

point of S, and define

$(x) = fcg:_) Pdx + Qdy.

where C(x) is any stairstep curve in S from a to x. There
always exists such a stalrstep curve (by hypothesis), and the
value of the line integral is lndependent of the choice of

the curve (by Step 3). 1It remains to show that

36/3x = P and 3¢/3y = Q.
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WevproVed this once before under the assumption‘that C(x) was

an arbitrary piecewise smooth curve. But the proof works just as
well if we require C(x) to be a stairstep curve. To compute
3¢/3%x, we first computed (¢ (x+h,y) - ¢(x,y)]1/h. We computed
¢(x,y) by choosing a curve Cl from a to (x,¥), and inte-
grated along Cl‘ We computed ¢(x+h,y) by choosing this same
curve Cl plus the stéaight.line C2 from (x,y) to (x+h,y) .

In the present case, we have required Cl to be a stairstep curve.

Then we note that if Cl is a stairstep curve, C

1 ¥ C, 1is also

& stairstep curve. Therefore the earlier proof goes through with-

out change. [

Remark. It is a fact that if two pair of points of S can
be joined by some path in S, then they can be joined by a stair-
step path. (We shall not bother to prove this fact.) It follows
that the hypothesis of the preceding theorem is merely that S be

connected and simply connected.

Exercises
1. Let S be the punctured plane, i.=., the plane with the

origin deleted. Show that the vector fields

> - ' — -
Xi + vi -vi + xj
X +y X +y

satisfy the condition 2P2/dy = 2 Qﬁéx.
(a) Show that f is a gradient in S. [Hint: First find P sp‘fhat
2/« = x/(x2 + yz).] (b) Show that g is not a gradient in S. [Hint:

Compute _yclg- dd where C is the unit circle centered at the qrigin.]
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2. Prove the following:

Theorem 5. Let C1 be a simple closed stairstep curve in the plane.
Let C2 be a simple closed stairstep curve that is contained in the inner
region of Cl' Show that the region consisting of those points that are in
the inner region of Cl and are not on C2 hor in the inner region of C2

is a generalized Green's region, bounded by C, ard C

1 2"

[Hint: Follow the pattern of the proof of Theorem 3.]

3. Let g be the vector field of Exercise 1. Let C be any simple
closed stairstep curve whose inner region contains 0. Show that

chig-dg # 0. [Hint: Show this inequality holds if C 1is the boundary

of a rectangle. Then apply Theorem 5. ]

*4 . Even if the region S 1is not simply connected, one can
usually determine whether a given vector field equals a gradient
field in S. Here is one example, where the region S 1is the

punctured plane, ’ -

Theorem 6. Suppose that £ = Pi + Qj is continuously

differentiable and

3Q/9x = 3P/3v

in the punctured plane. Let R be a fixed rectangle enclosing

the origin; orient B4 R counterclockwise; let

A = P dx + Q dy. "

[Bd R

(a) If C 1is any simple closed stairstep curve not touch- -

ing the origin, then

J P dx + Q dy
C

either equals + A (if the origin is in the inner region of ()

or 0 (otherwise).
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(b)) If A =0, then f equals a gradient field in the

punctured plane. [Hint: Imitate the proof of Theorem 4.]

(c) If A # 0, then f differs from a gradient field by

a constant multiple of the vector field

2

g(x) = (-yi + X1)/(x2 + y°).

That is, there is a constant ¢ such that £ + cg equals a

gradient field in the punctured plane. (Indeed, c = -A/27.)
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%9 _ 20 3%, 39 av,3v | 9%y
Ju ax Ju dy Ju’ 3v duov
P 2
Sl (393X, 3Q 3Y,3Y . 37
IV (ax v * Yy av)au * avau °

Subtracting, we obtain

30 (3% 3Y _ 3X 3Y, _ 30
ax(au v v au) ax J(u,v) J

where DQ/QX is evaluated at F(u,v). Since 3Q/9x = £ , we have our desired result:
JIS f(x,y) dx dy = + J}; £(F(u,v))J(u,v) du dav. [J

One can weaken the hypothesis of this theorem a bit if one
wishes. Specifically, it is not necessary that the function
f(x,y) which is being integrated be continuous in an entire rec-
tangle containiné the region of integration S. It will suffice
if £(x,y) 1is merely continuous on some open set containing S
and C. For it is a standard theorem (not too diffiéult to prove)
that in this case one can find a function g that is continuous
in the entire plane and equals f on S and C. One then applies

the theorem to the function g.
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b -
f Q(a(t))j «»a'(t) dt
a

L o3 - da

b vy d
f Q(a () 7Y (8(t)) dt
a

b
Y o, Py
L. Q(g(t))(gaBl(t) t oagBy (k) dt

j ].é'(t) dt ’

b oy 7
=) oo T+ 5

where the partials are evaluated at fg(t). We can write this last integral

as a line integral over the curve D. Indeed, if we define
p)
Pi(u,v) = Q(F(u,v) Sh(u,v)
0,(u,v) = Q(F(u,v) u,v) |,
1 oV

then this last integral can be written as
FP
5 (P11+Qlj)' dg.

Now we apply Green's theorem to express this line integral as a

double integral. Since T 1is by hypothesis a Green's region,

this line integral equals

0Q oP
1__1
T

It remains to compute these partials, using the chain rule. We

have
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Proof. Let R = [c,d] x (c',d']. Define

% v
Q(x,y) = ] f(t,y)dt for (x,y) in R. Then 3Q/3x = f(x,y)
- e .

on all of R, because f is continuous. We prove our theorem
by applying Green's theorem. Let (u,v) = B(t) be a |
parametrization of the curve D, for a < t < b; choose the
counterclockwise direcﬁion, SO Creen's theorem holds for 7.
Then a(t) = F(8 (t)) is a parametrization of the
curve C. It may be constant on some subintervals of the ¢t-
axis, but that doesn't matter when we compute line integrals.

Also, it may be counterclockwise or clockwise.

= i N
% N
< A - S L_’a”/////ﬂ
8 t R e e
“D=oT l__

R

We apply Green's theorem to S :

- >
If f(x,y)dx dy = ff 3Q/3x dx dy = * j (0i + Qj) *da.
: c 2
] S
This sign is + if a(t) parametrizes C in the counterclock-
wise direction, and - otherwise. Now let us compute this iine

integral.



The change of variables theorem

Theorem 7. (The change of variables theorem)

Let S be an open set in the (x,y) plane and let T be an open set

y_{ the (u,v) plane, p_ounded'gx the piecewise-differntiable simde closed curves
N

C and D , respectively. Let F(u,v) = (X(u,v), Y(u,v)) be a transformation

(Coh'Huu.ou.sly differentiable)
from an open set of the (u,v) plane into the (x,y) plane that carries T into

S, and carries D =)T onto C =)S. As a transformation of D ontoC,

To be
F may be constant on some segments of D, but otherwise iii\o?le—tg:one.

Assume S and T are Green's regions. Assume that f£(x,y) is continuous

in some rectangle R containing S. Then

-HS f(x,y) d&x dy = + S\IT £(F(u,v)) J(u,v) du dv .
Here J(u,v) = det dX,Y/du,v . V’I_'hg sign is + if F carries the

clockwise orientation of D to the clockwise orientation of C, and is -

ctherwise.

Eyamgle 1. Consider the polar coordinate transformation
F(r,0) = (r cos 0, r sin 9) .
It carries the rectangle T 1in the (r,8) plane indicated in the figu:e into
the wedge S 1in the (x,y) plane. It is constant on the left edge of T,
but .is one-to-one on the rest of T. Note that it canmes the counterclockwise

orientation of D =dT to the counterclockwise orientation of C = o S.

e K3
LA << F
/‘—N

T A

N N
\

> D=a3T
t A *x
a
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An alternate version of the change of variables theorem is

the following:

Theorem 8. Assume all the hypotheses of the preceding

theorem. Assume also that J(u,v) does not change sign on the

region T,

If J(u,v) > 0 on all of T, the sign in the change of

variables formula is +; while if J(u,v) <0 on all of T, the

sign is -. Therefore in either case,

Jj f(x,y)dx dy = ff £(F(u,v)) IJ(U'V)I du dv.
S T
Proof. We apply the precedlng theorem to the function

l. We obtaln the formula

CE(x,y)

(*) IJ dx dy = * JJ J(u,v)du dv.

S T
The left side of this equation is positive. Therefore if
J(u,v) 2 0 on all of T, the sign on the right side of the
formula must be +; while if J(u,v) < 0 on all of T, the
sign must be -. Now we recall that the sign does not depend on
the particular function being integrated, only on the transforma--

tion involved. Then the theorem is proved. a
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Remark. The formula we have just proved gives a geometric
interpretation of the Jacobian determinant of a transformation.
If J(u,v) # 0 at a particular point (uo,vo), let us choose a
small rectahgle T about this point, and consider its image s

under the transformation. If T 1is small enough, J(u,v) will

K"_\,

be very close to J(uo,vo) on T, and so will not change sign.

Assuming S 1is a Green's region, we have

area S = Jj dx dy = ff |T(u,v)| du dv, so

S T
area S ~ lJ(uO,vO)I (area T).

Thus, roughly speaking, the magnitude of J(u,v) measures how
much the transformation stretches or shrinks areas as it carries

a piece of the u, v plane to a piece of the x, y plane. And
the sign of J(u,v) tells whether the transformation presérves
orientation or not; if the sign is negative, then the transforma-
tion "flips over" the region T before shrinking or stretching it

to fit onto 8.
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Izcmecries
As an application of the change of variables theorem,_we
shall verify the final Property of our notion of area, namely,
the fact that congruent regions in the Plane have the same area.
First, we must make precise what we mean by a "congruence."

Definition. A transformation h : R2 —_> R2 of the plane

_ or an isometry
to itself is called a congruenceAlf 1t preserves distances between

points. That is, h '1s a congruence if

Th(a) - h(b)Il = lla-bi

for every pair a, b of points in the plane.

The following is a purely geometric result:

Lemma 9. If h : rRZ — r? is a congruence, then h has

the form

hlx;y) = (ax +by +p, = + dy + q)

or, writing vectors as column matrices,

-2 B

where (a,c) and (b,d) are unit orthogonal vectors. It follows that

ad - bd, the Jacobian determinant of h, equals +1.

Proof. Let (p,q) denote the point h(0,0). Define

k : R2 —_> R2 by the equation

k(x,y) = h(x,y) - (p,q).

It is easy to check that Kk . is a congruence, since

k(a) - k(b) = h(a) - h(b)



for every pair of points 2, b. Let us study the congruence k,

which has the property that k(0) = 0.
We first show that Kk preserves norms of vectors: By

hypothesis,

la-0ll = llk(a) - k(O)I,  so

Ial Tk(a) = 0l = 1lk(a)l.
Second, we show that kK preserves dot products: By hypothesis,
Ik(2) - k()12 = la-bl?, so
Ik(a)i? - 2k(a) k(b)) + k)12 = 1al? - 2a-b + 1502
Because k preserves norms, we must have

k(@ - k(@ =a - b.

We now show that k 1is a linear transformation. Let e

and e, be the usual unit basis vectors for Rz; then (x,y)

Xe + ygz. Let
&3 = k(g;) and e, = k(e,).

‘Then e, and &4 are also unit orthogonal vectors, since k

preserves dot products and norms. Given X = (%X,y), consider

£30
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the vector k(x):; Dbecause e, and g4 form a basis for R2,

we have
K(x) = «(x)ey + B(x) g,

for some scalars o and B, which are of course functions of x.

Let us compute o and R. We have

L(x) = k(x) 83 because e; 1is orthogonal to gy
= k(x) *+ k(e,) by definition of 83
=Xx°e because k pfeserves dot products,
= x because e is orthogonal to e,-
Similarly,
{3(§) = k(x) gy = k(x)*k(e,) = x- e, = V.

We conclude that for all points x = (x,y) of R®%,

k(x) = xey + ve,.

Letting ez = (a,c) and e4 = (b,d), we can write k out in

components in the form

(ax + by, cx + dy) .

k(x) = x(a,c) + y(b,qd)



Thus k is a linear transformation.

Returning now to our original transformation, h

that
k(x) = h(x) - (p,q).

Therefore we caﬁ write out h(x) in components as
h(x) = (ax + by +»p, Cx + dy + q).

To compute the Jacobian determinant of h, we note that because

€3 = (a,c) and €4 = (b,d) are unit orthogonal vectors, we have

the equation

Therefore

det Ja ¢ + det [a b det |1 o
= , oOr
b 4 c d 0 1

(ad - be)2 = 1.

~

Theorem 10. Let h be a congruence of the plane to it-

self, carrying region S to region T. If both S and T are

Green's regions, then

area S = area T.

£33

+ Wwe recall



Proof. The transformation carries the boundary of T in
a4 one-to-one fashion onto the boundary of S (since distinct

2 are carried by h to distinct points of R2).

points of R
Thus the hypotheses of the preceding theorem are.satisfied.

Furthermore, |[J(u,v)| = 1. From the equation

JJ dx dy = j[ |J(u,v)| du dv
S T

we conclude that
area S = area T. [

EXERCISES.
l. Let h(x) = A-+x be an arbitrary linear transformation

2 to itself. If S 1is a rectangle of area M, what is the

of R
area of the image of S under the transformation h?

2. Given the transformation
h(x,y) = (ax + by + p, cx + dy + q).

(a) Show that if (a,c) and (b,d) are unit orthogonal

vectors, then h 1is a congruence.

(b) If ad - bc = *1, show h preserves areas. 1Is h

necessarily a congruence?

2

3. A translation of R is a transformation of the form

g(x) =x-p



¢

where ] is fixed. A rotation of R2 is a transformation of

the form
h(x) = (x cos ¢ - y sin ¢, x sin ¢ + y cos ¢),

where ¢ 1is fixed.

(a) Check that the transformation h carries the point
with polar coordinates (r,6) to the point with polar coordinates
(r,6+9¢) .

(b) Show that translations and rotations are
congruences. Conversely, show that every congruence with Jacobian
+l1 can be written as the composite of a translation and a rota-
tion.

(c) ‘Show that every congruence with Jacobian -1 can be
written as the composite of a translation, a rotation, and the

reflection map

k(x,y) = (-x,y).

4. Let A be a square matrix. Show that if the rows of
A are orthonormal vectors, then the columns of A are also

orthonormal vectors.
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Let S be the set of all (x,y) with b2x% + a2y2 ¢ |,

Given f(x,y), express the integral JI f as an integral over
S
2

the unit disc u? + v2 ¢ 1. Evaluate when f(x,y) = x Y

Let C be a circular cylinder of radius a whose central axis

is the x-axis. Let D be a circular cylinder of radius b { a

whose central axis is the z-axis. Express the volume common to the

two cylinders as an integral in cylindrical coordinates, [ﬂvaluate

—5

when b = a. ‘]
Transforn_the integral in problem 3, p. D.26 by using the substi-
Y = uv with u, v > 0. Evaluate the integral.

tution x = u/v,

g T4 S fetle wtle il reilice, (0,0) R

(I)ZXM(Z)W\. QMMMW
& tranaformthe g §§ GragVdedy Wil aw wlegad
v Tea s e lo,0% To,i1. Goaleale.
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St.okes' Theoream

Our text states and proves Stokes' Theorem in 12.11, but it uses
the scalar form for writing both the line integral and the surface integral
involved. In the applications, it is the vector form of the theorem that is
most likely to be quoted, since the notations dxAdy and the like are not
in common use (yet) in physics and engineering.

Therefore we state and prove the vector form of the theorem here.

The proof is the same as in our text, but not as condensed.

- -
Definition. Let F = Pi + Q3’+ RK be a continuously differentiable

vector field defined in an open set U of R3. We define another vector

field in U, by the equation

@rl ¥ = (ORAy - 90/0z) 1 + (3p/dz - 3R/Ax) § + (/% -3pRy) ¥ .

We discuss later the physical meaning of this vector field.

Ari easy way to remember this definition is to introduce the symbolic

operator "del", defined by the equation

S ._. 27 9>, 9>
Y = 5ttt K 4

and to note that curl ¥ can be evaluated by computing the symbolic determinant

— — ~
i 3 K
curl F = _.')4-1? = det | 9% 3y Iz

P Q R

Theorem. (Stokes' theorem). Let S be a simple smooth parametrized
surface in R3, parametrized by a function r : T = S, vwhere T 1is a
region in the (u,v) plane. Assume that T is a Green's region, bounded

by a simple closed piecewise-smooth curve D, and that r has continuous
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second-order partial derivatives in an open set containing T ard D.
Let C be the curve r(D).

If F 1is a continuously differentiable vector field defined in

an open set of R3 centaining S and C, then

j (F-T) ds = H ((curl #)-7R) ds .
c S

Here the orientation of C 1is that derived from the counterclockwise

orientation of D; and the normal T to the surface S points in the same

direction as Jr/dudr/dv .
-

Remark 1. The relation between T and n is often described
informally as follows: "If youwalkaround C in the direction specified by
T, with your head in the direction specified by n', then the surface S
is on your left." The figure indicates the correctness of this informal
description. |

Rémark 2. We note that the equatiqn is consistent with a change
of pararﬁetrization. Suppose that we reparametrize S . by taking a function
g : W— T carrying a region in the (s,t) plane onto T, and use the

new parametrization R(s,t) = r(g(s,t)). What hax/;pens to the integrals
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in the statement of the thiorem? If det Dg > 0 , then the left side of
the equation is unchanged, for we know that g carries the counterclockwise
orientation of QW' to the counterclockwise orientation of 9 T. Furthermore,
because IR /s xIR/It = (drMux dr/Jv) det Dg , the unit normal
determined by the parametrization R is the same as that determined by £,
SO the right side of the equation is also unchanged.

On the other hand, if det Dg< 0, then the counterclockwise orientation
of JW gces to the opposite direction on C, so that T changes
sign. But in that case, the unit normal determined by R 1is opposite to

that determined by r. Thus both sides of the equation change sign.

Proof of the theorem. The proof consists of verifying the

following three equations:

i PLT ds §Y PRz 3 - 32/Iy BT as ,
c s

1]

fc 0j’-T as S‘S‘S (-90/92 T + 30Bx K)- 0" ds ,

[ ’R.-Tas gS‘ QRAY T -IR/AxT])-Pas .
c s

The theorem follows by adding these equations together.
We shall in fact verify only the first equation. The others are
proved similarly. Alternatively, if one makes the substitutions

- - - - - —
i—=j and j -k ard k — i

and X —9y and y —-z and z —x ,
then each equation is transformed into the next one. This corresponds to
an orientation-preserving change of variables in R3 + SO it leaves the

orientations of C and S unchange&.

—y
- SQ let F henceforth denote the vector field Pi ; we prove Stokes'

theorem in that case.
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The idea of the proof is to express the line and surface integrals

of the theorem as integrals over D and T, respectively, and then to

apply Green's theorem to show they are equal.
Let r(u,v) = (X(u,v), Y(u,v), Z(u,v)), as usual.
Choose a counterclockwise parametrization of D ; call it

7(t) + for a< t<b. Then the function

<(t) = r(¥(t)) = (X(3(£)),Y(A(£)),2(B(t)))

is the parametrization of C that we need to compute the line integral

@ Q?

We compute as follows:

- b
j F.dg = ‘( P(£(t)) «](t) det
C a

b
- | reentE e + §X~62<t>1 at
a

where 3X/2u and dX/)v are evaluated at 3(t), of course. We can write

this as a line integral over D. Indeed, if we let p ard g be the functions

plu,v)

P(x(u,v)) $X(a,v)

P(z(uv)) 2X(u,v) ,

alarv) oV

then our integral is just the line integral
-
f (o1 + qj) - a¥.
D

Ncw by Green's theorem, this line integral equals



(*) ffT (3q/du - Jp/dv) du dv .

' We use the chain rule to compute the integrand. We have

p) = (P X . dP DY 2P D

ﬁ (—'b—D(.TLI+Wﬂ+aZ du/3v T P oy
3p _ (P 3X . JP JY . 9P 97\ Ix 2°x
ﬁ - (T;_B—v+3y%+az Bv)au * P 3du

where P and its partials are evaluated at r(u,v), of course.
Subtracting, we see that the first and last terms cancel each other.

The double integral (*) then takes the form

dP XY Yp)z,x
ﬂT S 3ysuv T Sasuy] WAV

Ncw we compute the surfaee integral of our theorem. Since
e N = -
curl F = 9Pz j - dP/dy Kk , formula (12.20) on p. 435 of our text

tells us we have

s e ?. s = ] [9;’33}5 - 2R 4y g

'Here oP/3z and 3P/Jy are evaluated at £(u,v), of course.

Our theorem is thus proved. LJ



Exercises on the divergence theorem

Let S be the portion of the surface 2z = 9 - xz - y2 lying

above the xy plane. Let B be the unit upward normal to S.
Apply the divergence theorem to the solid bounded by S and the

xy-plane to evaluate JI P .3 ds if:
C S

(a) ¥ = sin(y+z)1 + %3 + (x2+y2)ﬁ.
(b) P = y221 + y3 + zR.
Answers: (a) 8lm/2. (b) B8lm.
Let S1 denote the surface 2z = 1 - x2 - y2: z'z 0. Let

Sy denote the unit disc x° + yz ¢ 1l, z=0. Let T = x? -

(2x+y)3 + zk; let 31 be the unit normal to S, and let 32 be
the unit normal to Sz, both with positive K component. Evaluate

JJSI T 31 dS‘ and JISZ T 32 ds.
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Grad, Curl, Dpiv andg all that.

We study two questions about these Ooperations:
I. Do they have natural (i.e., coordinate-free) Physical

Or geometric interpretations?

II. What is the relation between them?

I. We already have a natural interpretation of the
gradient.
For divergence, the question is answered in 12.20 of
Apostol. The theorem of that section gives a coordinate-free
/definition of divergence E, and the subsequent discussion
gives a physical interpretation, in the case where E is the
flux density vector of a moving fluigd.
Apostol treats curl rather more briefly. Formula
(12.62) on p. 461 gives a coordihate—free expression for

- >
n e+ curl F(a), as follows:

(*) T - curl E(g) = 1im -1 f F - da
C(r)

r-0 mr
where C(r) is the circle of radius r centered at a
lying in the Plane perpendicular to A and Passing through

the point 8, and C(r) is directed in a counterclockwise




direction when viewed from the tip of Rn. This number is

called the circulation of F o at a around the vector n;

——

it is clearly independent of coordinates. Then one has a

-
coordinate-free definition of curl F as follows:

-
curl F at a points in the direction of the vector
>
around which the circulation of F is
a maximum, and its magnitude equals

this maximum circulation.

You will note a strong analogy here with the relation between
the gradient and the directional derivative.

For a physical interpretation of curl F, let us
imagine E to be the velocity vector field of a moving fluid.
Let us place a small paddle wheel of radius r in the fluid,

with its axis along a. Eventually, the paddle wheel settles

-y
m

o

ey

down to rotating steadily with angular speed w (considered as

positive if counterclockwise as viewed from the tip of n).
The tangential component Fel of velocity will tend to in-

crease the speed w if it is positive and to decrease w if



it is negative. On physical grounds, it is reasonable to

suppose that

> >
average value of (F.T)

speed of a point
on one of the paddles

That is,

3y

ds

1 >
mfcf" Te-

It follows that

—17 f F oo % ds = 2y,

T—C c
so that by formula (*), we have (if r 1is very small),

™ . curl F(g) = 2uw.

. -

In physical terms then, the vector E:url F'(g)] points in the
direction of the axis around which our paddle wheel spins

most rapidly (in a counterclockwise direction), and its magni-

tude equals twice this maximum angular speed.
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II. What are the relations between the operations
grad, curl, and div? Here is one way of explaining them.

Grad goes from scalar fields to vector fields, Curl

goes from vector fields to vector fields, and Div goes from
vector fields to scalar fields. This is summarized in the

diagram:

Scalar fields ¢ (x)
grad

Vector fields : E(i)
curl

Vector fields a(&)
div

Scalar fields | ¥ (x)

Let us consider first the top two operations, grad and

curl. We restrict ourselves to scalar and vector fields that

are continuously differentiable on a region U of R3.
Here is a theorem we have already proved:

-

Theorem 1. F is a gradient in U if and only if

% Fe de = 0 for every closed piecewise-smooth path in U,
C

> > >
Theorem 2. If F = grad ¢ for some ¢, then curl F = 0.

Proof. We compute curl F by the formula

[ > > -
i j k
* s
curl F = det Dl D2 D3
| F1 Fp P3|

-> ) . e >
= J.(DZF3-D3F2) = 3(DyF3=D4Fy) + k(‘Dle-DzFl) .
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We know that if F 1is a gradient, and the partials of F are
continuous, then DiFj = DjFi for all i, j. Hence
- -> .
curl F = 0. a

Theorem 3. If curl F = § i a star-convex region U,

then F = grad ¢ for some ¢ defined in U.

The function ¢(x) = ¢(x) + ¢ is the most general func-

tion such that § = grad b¢.

Proof. If curl F = 0, then DiFy = DyF; for all i,
j. If U 1is star-convex, this fact implies that F 1is a

gradient in U, by the Poincaré lemma. [J

Theorem 4. The condition

does not in general imply that F is a gradient in U.

Proof. Consider the vector field

F(x,y,2) = (55, %=, 0).

X +y X +y

It is defined in the region U consisting of all of R3 ex-
cept for the z-axis. It is easy to check that curl ¥ = §.
To show F is not a gradient in U, we let C be the unit

circle



i)
-
[

a(t) = (cos t, sin £, 0); 0 < t< 27

in the xy-plane, and compute

?C?-dg_=27r#0.

It follows from Theorem 1 that ¥ cannot be a gradient in U.[J

Remark. A region U in R3 is called "simply
connected" if, roughly speaking, every closed curve in U
bounds an orientable surface lying in U. The region R3-
(origin) is simply connected, for example, but the region
R3—(z-axis) is not.

It turns out that if U is simply connected and if
curl ¥ =3 in U, then F is a gradient in U. The proof
goes roughly as follows:

Given a closed éurve C in U, let S be an orient-

able surface in U which C bounds. Apply Stokes' theorem

to that surface. One obtains the equation
Lf)'F’-d_o_‘=”cur1§-Eds=“ 0 ds = 0.
C ' S

Then Theorem 1 shows that F is a gradient in U.

Now let us consider the next two operations, curl and
div. Again, we consider only fields that are continuously
differentiable in a region U of R3. There are analogues of

all the earlier theorems:



Theorem §. If

+ . .
G i a curl in U

y then

/[ G-3ds =0 for gvery orientable closed surface §
S .

Proof. Let S

be a closed surface that lies in

‘_7
e (While we assume that

)
pes
(a)

S 1lies

in U, we do not assume that

U includes the 3-dimensional

region that S bounds.

S up into two surfaces

-’
124V
>

common boundary, which is a simple smooth closed curve

by hypothesis, & = curl F for some F defined in U.

pute:-

” E-Hds=H curli‘"-ﬁds=f F da,
S S C

) Break

Sl and

S2 ‘that intersect in their

C. Now

We com-

1 1
ff Gen ds = ff curl F+n ds = - f F. da.
82 82 C
Adding, we see that .
H d.nds =o0.0
S

Remark. The converse of Theorem 5 holds also, but we

shall not attempt to prove it.

Theorem 6. If g = curl ¥ for some ?, then div & = 0.

Proof. By assumption,
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-

& = 17 = i %
= curl F = 1(D2F3—D3F2)—j(DlF3-D3Fl)+k(DlF2—D2Fl).
Then

i G = - - -
div G (DlD2F3 DlD3F2) (D2D1F3 D2D3Fl)+(D3DlF2"D3D2Fl)

=0.0

Theorem 7. If div G = 0 in a star-convex region U,

then & = curl F for some F defined in U.

The function H = F + grad ¢ is the most general func-

- -
tion such that G = curl H.

We shall not prove this theorem in full generality. The
proof is by direct computation, as in the Poincaré lemma.

A proof that holds when U is a 3-dimensional box, or
when U 1is all of R3, is given in section 12.16 of Apostol.
This proof also shows how to construct a specific such function
F in the given cases.

Note that if E = curl F and E = curl ﬁ, then
curl(ﬁ-f) = 0. Hence by Theorem 3, H-F = grad ¢ in U,
for some ¢.

Theorem 8. The condition

div & = 0

|5
a

does not in general imply that g is a curl in U.




Proof. Let § be the vector fiéld

P — i+y3 + zk
G(XIYIZ) = X ] 3/2 )
(x2+y2+zz)

which is defined in the region U consisting of all of R3'

except for the origin. One readily shows by direct computation

that div G = 0.

-
mo

If S 1is the unit sphere centered at the origin, then we show

that

LJ Gen dA # 0.

This will imply (by Theorem 5) that & is not a curl.

If (x,¥,2) 1is a point of S, then I (x,y,z)I =1,

> -+ -+ -> -
so G(x,y,2) = xi + yj + zk = i. Therefore

!J Gen dA = ff 1 dA = (area of sphere) # 0. a
S S



I
e
[0))

Remark. Suppose we say that a region U in R3 is "two-

simply connected" if every closed surface in U bounds a
solid regioﬁ lying in U* The region U = R3-(origin) isvnot%wo-
simply connected", fof example, but the region U = R3—(z axis)
is.
It turns out that if Uisﬁmm-snmuy connected and if
div G = 0 in U, then g is a curl in U. The proof goes
roughly as follows:
Given a closed surface S in U, 1let V be the region

it bounds. Since & is by hypothesis defined on all of v,

we can apply Gauss' theorem to compute

Then the converse of Theorem 5 implies that G is a curl in U.

There is much more one can say about these matters, but
one needs to introduce a bit of algebraic topology in order to do

so. It is a bit late in the semester for that!

*The proper mathematical term for this is "homologically trivial in dimension two."
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