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Linear Spaces 
 

we have seen (12.1-12.3 of Apostol) that n-tuple space 

V, has the following properties : 

Addition: 
 

1. 	 (Commutativity) A + B = B + A. 

2. 	 (Associativity) A + (B+c) = (A+B) + C. 

3. 	 (Existence of zero) There is an element 0
-
such 'that A + 0 = A for all A.-

4. 	 (Existence of negatives) Given A, there is a 

B such that A + B = 0.-
Scalar multiplication: 
 

5. 	 (Associativity) c (dA) = (cd)A. 

6. 	 (Distributivity) (c+d)A = cA + dA, 

c(A+B) = cA + cB. 

7. (Multiplication by unity) 1A = A. 

Definition. More generally, let V be any set of objects 

(which we call vectors). And suppose there are two operations on 

V, as follows: The first is an operation (denoted +) that 

assigns to each pair A, B of vectors, a vector denoted A + B. 

The second is an operation that assigns to each real number c 

and each vector A, a vector denoted cA. Suppose also that the 

seven preceding properties hold. Then V, with these two opera- 

tions, is called a linear space (or a vector space). The seven 

properties are called the axioms - ­for a linear space. 
 



i 
There are many examples of linear spaces besides n--tuple space 'n 

The study of linear spaces and their properties is dealt with in a subject called 

Linear Algebra. WE!shall treat only those aspects of linear algebra needed 

for calculus. Therefore we will be concerned only with n-tuple space 

and with certain of its subsets called "linear subspaces" :Vn 
 

-Definition. Let W be a non-empty subset of Vn ; suppose W 

is closed under vector addition and scalar multiplication. Then W is 

called a linear subspace of V n  (or sometimes simply a subspace of Vn .) 

To say W is closed under vector addition and scalar multiplication 

means that for every pair A, B of vectors of W, and every scalar c, 

the vectors A + B a ~ dcA belong to W. Note that it is automatic that 

the zero vector Q belongs to W, since for any A I W, we have Q = OA. 

Furthermore, for each A in W, the vector -A is also in W. This means 

(as you can readily check) that W is a linear space in its own right (i.e., 
f 

. it satisfies all the axioms for a linear,space). 
 

S~bspaces of Vn m y  be specified in many different ways, as we shall 
 

see. 
 

Example 1. The subse t  o f  Vn c o n s i s t i n g  of  the 9- tup le  

alone i s  a subspace of Vn; it is  ths "smal le s t  p o s s i b l e "  sub­

space. Pad of course V, i s  by d e f i n i t i o n  a subspace of Vn; 

it i s  the " l a r g e s t  poss ib le"  subspace. 

W;ample 2. Let A be a fixed non-zero vector, The subset of Vn 

consisting of all vectors X of the form X = cA is a subspace of . 
'n 

It is called the subspace spanned by A. In the case n = 2 or 3 ,  it can 

be pictured as consisting of all vectors lying on a line through the origin. 
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Example 3. Let A and B be given non-zero vectors that are not 
 

parallel. The subset of Vn consisting of all vectors of the form 
 

is a subspace of V 
no It is called the subspace spanned by A and B. 

In the case n = 3, it can be pictured as consisting of all vectors lying 

in the plane through the origin that contains A and B. 

- - - A /  

We generalize the construction given in the preceding 
 

examples as follows: 
 

Definition. Let S = $A?,  ... a be a set of vectors in Vn . 
A vector X of Vn of the form 

X = c A +1 1  
... +* 
is called a linear combination of the vectors Alr...,A,c . The set W of 
all such vectors X is a subspace of Vn, as we will see; it is said to be 

the subspace spanned by the vectors Al, ...,% . It is also called the 

linear span of A l ,  ...,+ and denoted by L(S). 

Let us show that W is a subspace of Vn. If X and Y 

belong to W, then 



I 
X = clAl + - *  and Y = d A  + * * *  

+ =kAk 1 1  + dkAkf 

for soma scalars ci and di. We compute 
 

X.+ Y = (cl+dl)A1 f * * *  + (ck+dk)Akr 

ax = (ac ) A  + * * *  + (ack)Akf
1 1 
 

so both X + Y and ax belong to W by definition. Thus W 

is a subspace of Vn. ­

Giving a spanning set for W is one standard way of specifying W. 

Different spanning sets can of course give the same subspace. Fcr example, 

it is intuitively clear that, for the plane through the origin in Example 3, 

any_ two non-zero vectors C and D that are not parallel and lie in this 

plane will span it. We shall give a proof of this fact shortly. 

Example 4. The n-tuple space Vn has a natural spanning set, 
 

namely the vectors 
 

I 

En = (0,0,0,...,1). 

These are often called the unit coordinate vectors in It
- Vn. 

is e a s y  to see that they span Vn, for if.X = (xl,...,x ) is n 
 

an element of V,, then 
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I 

In the case where n = 2, we often denote the unit 

coordinate vectors El and E2 in V2 by I and ?3 ,  

respectively. In the case where n = 3, we often denote El, 

t t

E2, and- E3 by 1, I and respectively. They are pic- 
 

tured as in the accompanying figure. 
 

Example 5. The subset W of V3 consisting of all vectors of 

the form (a,b,O) is a subspace of V3. For if X and y 

are 3-tuples whose third component is 0, so are X + Y and 

cX. It is easy to see that W is the linear span of (1,0,0) 

and (O,l,O). 
 

Example 6. The subset of V3 consisting of all vectors of the 

form X = (3a+2b,a-b,a+7b) is a subspace of V3. It consists 

of all vectors of the form 

X = a(3,1,1) + b(2,-1,7), 

so it is the linear span of 3 1 ,  and (2,-1,7). 
 

Example 1, The set W of all tuples (x1,x2,x3.x4) svch that 
 



is a subspace of Vq . as you can check. Solving this equation for x4 , WE see 

I that a 4-tuple belongs to W if and only if it has the form 

x = (xl, X2, x3, -3x1 + X.2 - 5 ~ ~ ) .  

where xl acd x, and x3 are arbitrary. This element can be written in the form 
 
L 

It follaris that (1,O.O.-3) and (OtlrOtl) and (O,Ofl,-5) sy:an W. 
 

Exercises 
 

1. Show that the subset of V3 specified in Example 5 is a subspace 
 

of V-. Do the same for the subset of V4 s~ecifiedin Example 7. What can 
 
3 

you say about the set 'of all x ,...x such that alxl+ .. . + a x = 0 n n n 

in general? (Here we assume A = (al....,an) is not the zero vector.) Csn you 

give a geometric interpretation? 

2. In each of the following, let W denote the set of 
I all vectors (x,y,z) in Vj satisfying the condition given. I 

(Here we use (x,y,z) instead of (xl,x2,x3) for the general 

element of V3.) Determine whether W is a subspace of Vj .  

If it is, draw a picture of it or describe it geometrically, 

and find a spanning set for W. 
 

(a) x =  0. (e) x = y  or 2 x = z .  

(b) x + y = O .  
  
( f )  x2 - y2 = 0. 
 

(c) X + y = 1. ( 4 )  X 2  + *  2 = 0 ­

(dl x = y and 2x = 2. 

3. Consider the set F of all real-valued functions 
 

defined on the interval [arb]. 
 



(a) Show that F is a linear space if f + g 
denotes the usual sum of functions and cf denotes the usual 

product of a function by a real number. What is the zero 

vector? 

(b) Which of the following are subspaces of F? 
 

(i) All continuous functions. 
 

(ii) All integrable functions. 
 

(iii) All piecewise-monotonic functions. 
 

(iv) All differentiable functions. 
 

(v )  All functions f such that f(a) = 0. 

(vi) All polynomial functions. 
 

Ljnear independence 
 

-Dc?finition. We say that the set S = I A ~ ,...,q;\ of vectors of vn 

spans the vector X if X belongs to L(S), that is, if 

X = c A + ... + ck+1 1  
  

for some scalars ci. If S spans the vector X, we say that S spans X 
 

uniquely if the equations 
 

X = ciAi and 
i=l 

imply that ci = di for all i. 

It is easy to check the following: 

Theorem 1,Let S = < A ~ ,.. . be a set of vectors of Vn; let 

X be a vector in L(S). Then S spans X uniquely if and only if S spans 

the zero vector 2 uniquely. i 
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Proof. Mte that -0 = 2OAi . This means that S spans the zero 

vector uniquely if and only if the equation 
 

implies that ci = 0 for all i. 

Stippose S syms 2 uniquely. To show S spans X uniquely, suppose 

k 
X = c.A. and X =  2 dilli. 

1=1 1 1  i=l 

Subtracting, we see that 

whence ci - d. 
1 

= 0, or ci = di , for all i. 
 

Conversely, suppose S spans X uniquely. Then 
 

for some (unique) scalars xi' Now if 

it follows that 
 

Since S spans X uniquely, we must have xi = xi + ci , or ci = 0, for all 1. 0 

This theorem implies that if S spans one vector of L(S) uniquely, 
 

then it spans the zero vector uniquely, whence it spans every vector of L(S) 
 

uniquely. This condition is important enough to be given a special name: 
 

Definition. The set S = ZA] ,...,%J of vectors of V n is said to 

be linearly independent (or simply, independent) if it spans the zero vector 

uniquely. The vectors themselves are also said to be independent in this 
I 



i 

situation. 
 

If a set is not independent, it is said to be dependent. 
 

Banple 8. If a subset T of a set S is dependent, then S itself 
 

is dependent. For if T spns Q ncn-trivially, so does S. (Just add on the 
 

additional vectors with zero coefficients.) 
 

This statement is equivalent to the statement that if S is independent, 

then so is any subset of S. 

Example 9. Any set containing the zero vector Q is dependent. For 
 

example, if S = A ~ , . . . ,  arid A1 = 0, then 

Example The unit coordinate vectors E1,...,En in Vn span Q 

uniquely, so they are independent. 

Pample & Let S = A , . .. . If the vectors Ai are non-zero 

and mutually orthogonal, then S is independent. For suppose 

Taking the dot product of both sides of this equation with A1 gives the equation 
 

0 = C1 AlOA1 

(since A. *A1 = 0 for i # 1) . NGW A1 # Q by hypothesis, whence A1 *A1 # 0,1 
 

whence cl = 0. Similarly, taking the dot product with Ai for the fixed index 
2 
 

j shows that c = 0. 
j 
 

Scmetimes it is convenient to replace the vectors by the vectors 
 Ai 

Bi = A ~ / ~ I A ~ ~ \  . Then the vectors B1,...,Bk are of & length and are mutually 

orthogonal. Such a set of vectors is called an orthonormal set. The coordinate 

vectors E l form such a set. n 
 

B.mple A set ccnsisting of a single vector A is independent 
 



if A # Q. A set consisting of two non-zero vectors ARB is independent if and 
I 

only if the vectors are not parallel. More generally, one has the following result: 

Theorem 2- The set S = { A ~,. . .,\I is independent if and only if none 

of the vectors Aj  can be written as a linear combination of the others. 

Proof. Suppose first that one of the vectors equals a linear 
 

combination 06 the others. For instance, suppose that 
 

Al = c2A2 + * * *  + ckAk: 

then the following non-trivial linear combination equals zero: 
 

.. .... Conversely, if 

where not all the ci are equal to zero, we can choose m so 
 

that cm # 0, and obtain the equation 

where the sum on the right extends over all indices different 
 

from m. 
 

Given a subspace W of Vnr there is a very important relation that 

holds between spanning sets for W and independent sets in W : 

Theorem 21 Let W be a subspace of Vn that is spanned by the k 

vectors A1, ...,\ . Then any independent set of vectors in W contains at most 

k vectors. 

i 



Proof. Let B ,...,B be a set of vectors of W; let m 2 k. We 

wish to show that these vectors are dependent. That is, we wish to find 

scalars xl,...,x m '  --­nc;t all zero, such that 
 

Since each vector B belongs to W, we can write it as a linear combination of 
 
j 

the vectors Ai . We do so, using a "double-indexing" notation for the coefficents, 
as follows: 
 

Multiplying the equation by x and summing over j, and collecting terms, we 
 
j 
 

have the equation 
 

In order for <x .B to equal 2 , it will suffice if we can choose the x 
j j 
 

so that coefficient of each vector Ai in this equation equals 0. Ncw the 
 

are given, so that finding the x. is just a matter of solving a 
 
numbers aij 3 
(homogeneous) system consisting of k equations in m unknowns. Since m > k, 

there are more unknowns than equations. In this case the system always has a non-trivial 

solution X (i.e., one different from the zero vector). This is a standard fact 

about linear equations, which we now prove. a 
First, we need a definition. 

Definition. Given a homogeneous system of linear equations, as in (*)  

following, a solution of the system is a vector (xl,...,xn) that satisfies 

each equation of the system. The set of all solutions is a linear subspace of 

V (as you can check). It is called the solution space of the system. 
n


/ 



It is easy to see that the solution set is a subspace. If we let 
 

be the n-tuple whose components are the coefficerts appearing in the 
 

jth equation of the system, then the solution set consists of those X 
 

~ u c h  that A . * X  = 0 for all j. If X and Y are two solutions, then 
J 

and 

Thus X + Y and cX are also solutions, as claimed. 

Theorem 4. Given a bornogeneous system of k linear equations 

I in n utlknow~ls. If k is less than n, then the solution space con- 


tains some vector other t2ian 0. 


I'ronf.. We are concer~tcd here only v i th  proving the existence of some 
solutioli otlicr tJta11 0, not with nctt~nlly fitidirtg such a solution it1 practice, 
nor wit11 finditig all possildd solutiot~s. (We 11-ill study the practical prob- 
lem in nnuch greater rlctail in a later scctioti.) 

We start  with a system of lc ecluatio~is in ?t uriknowns: 

Our procedure 11411 1)c to reduce tlic size of this system step-by-step by 
elimitit~ting first XI, tlleri x2, and so on. After k - 1 steps, we mil1 be re- 
duced to solvitig just one cqt ta t io~~ But a certainand this will be easy. 
nmount, of care is ticeded it1 the dcscriptiorl-for instance, if all = . . = 
akl = 0, i t  is nonset~se to spcak of "elirninnting" XI, since all its coefi­
cierits are zero. \Ve I~ave  for this possibility. t o  a l lo~ i~  

'L'obegirt then, if all the cocflicic~tts of st are zero, you may verify tha t  
the vector ( fro ,. . . ,0) is n solution of the system which is different from 
0 ,  and you nre done. Othcr~risc, a t  Icast one of the coefiicielits of st is 
nonzero, attd 1t.e rncly s~tj~poscfor cortvetlier~ce that  the equations have 
beerr arranged so that  this happetls ill the first ec~uation, with the result 
that  0 1 1  + 0. We rnultiply the first crlt~ation 1)y the scalar azl/afl and then 
suhtract i t  from the second, eli~nitiat~itlg tghe XI-term from the second 
et~uatiori. Si~rtilarly, we elirninatc the xl-term in each of the remaining 

1 equations. 'I'he result is a ttcw system of liriear equatioris of the form 



Now any soltttiolr of this 11c1v ssystoc~n of cqttntiol~s is also a solution of the 
old system (*), because we cat1 recover the old system from the new one: . 

we merely multiply the first erlttatiorl of tlre systcm (**) by the same 
scalars we used before, aild.then tve add i t  to the corresponding later 
equations of this system. 

The crucial ttlirig about what n c  hnve done is contained in the follorvirlg 
statement: If the smaller system etlclosed in the box above has a solution 
other than the zero vector, tlictr thc Ia>rgcr system (**) also has a solution 
other than the zcro ~ c c t o r  [so tJ1lnt the origitinl system (*) tve started 
wit21 llns a solutio~lo t l~crthan the zcro vcctor). $Ire prove this as follows: 
Sr~ppose(d2, . . . , d.,) is a solutiolr of t l ~ o  stna1.ller system, different from 
, . . . ,. We su1)stitutc itito tllc first equation and solve for XI, thereby 
obtailiirlg the follo~ving vector, 

w1ricI1 yo11 may verify is a so l~~ t~ ionof t,hc Iargcr systcm (**). 
In this v a y  we havc rc!clnc:e~l tlio sixo of our problcrn; we now tlccd only 

to prove otir ttlcorcrn for a sysf,ern of Ic - 1 ecluntions in n - 1unknowns. 
If ~ v c  apply this reductio~l tilnc, tve reduce the prol~lem to prov- n scct)~~ci 
ing the theorem for a systern of k - 2 ccl~tatiol~sin n - 2 unkno~v~rs.Con­
tinuing in this way, after lc - 1 eIimiriation steps it1 all, we will be down 
to a system cot~sistitig of orlly one ecll~nt,ion, it1 n - k + 1unlrno~vns.Now 
n - Ic + 1 2 2, because IVC ass~trnedns our hypothesis that  n > Ic; thus 
our problem retluccs to  proving the follo~trillg ststemcrrt: a "system" con- 
sistitig of otze li~icnrhornogcneous ccluntion it1 two or ntore unkno~vrlsalways 
has a solutioll other than 0. 

WE!leave it to you to show that this statement holds.(Be sure you 
 

ccnsider the case where one or more or all of the coefficents are zero.) a 
 
-E2ample 13. We have already noted that the vectors El,...,E n span all 

of Vn. It. follows, for example, that any three vectors in V2 are dependent, 
 

that is, one of them equals a linear combination of the others. The same holds 
 

for any four vectors in Vj. The accompanying picture ~ k e s  these facts plausible. 
 

I 
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Similarly, since the vectors Elt..-,E are independent, any spanning 
n 
 

set of Vn must contain at least n vectors. Thus no two vectors can span 

V3' 

and no set of three vectors can span .v4 


Theorem 5. Let W be a subspace of Vn that does not consist of 
 

-0 alone. Then: 

(a) The space W has a linearly indepehdent spanning set. 

(b) Any two linearly independent spanning sets for W have the same 
 
> 

number k of elements; k < n  unless W is all of Vn. 
 

Proof. (a) Choose A1 # -0 in W. Then the set {A1> is independent. 

In general, suppose A l .  A is an independent set of vectors of W. If 

this set spans W, we are finished. Otherwise, we can choose a vector Ai+l 

of W that is not in L(Alr.. .,A.) . Then the set 1A1, ...,A A~+~] is 
1 i' 

independent: For suppose that 

for some scalars ci not all zero. If = 0 ,  this equation contradicts c ~ + ~  

independ ecce of A , ..A r while if c ~ + ~# 0, we can solve this equation 

for A contradicting the fact that Ai+l does not belong to L(Alt....A,).
1 
 

Cc~ntinuing the process just described, we can find larger and larger 
 

independent sets of vectors in W. The process stops only when the set we obtain 
 

spans W. Does it ever stop? Yes, for W is contained in Vn, ar;d V n contains 
 



i 

no more than n independent vectors. Sc, the process cannot be repeated 
 

indefinitely! 
 

IA~,(b) Suppose S = .. . \\ and T = B ... B are two 

ljnearly independent spanning sets for W. Because S is independent and T 

spans W, we must have k <_ j , by the preceding theorem. Because S sy:ans 

W and T is independent, we must have k z j .  Thus k = j. 

Nclw Vn contains no more than n independent vectors; therefore we 

must have k 5 n. Suppose that W is not all of Vn. Then we can choose 

a vector 2$+1 of Vn that is not in W. By the argument just given, the 

set A ...+ is independent. It follows that W1 < n, so that k in. 0 

Definition. Given a subspace W of Vn that does not consist of Q 

alone, it has a linearly independent spanning set. Any such set is called a 

) basis for W, and the number of elements in this set is called the dimension of W. 

We make the convention that if W consists of -0 alone, then the dimension of 

W: is zero. 
 

Example 14. The space Vn has a "naturaln basis consisting of the 

vectors E1,...,E . It follows that Vn has dimension n. (Surprise!) There n 
 

are many other bases for Vn., For instance, the vectors 
 

form a basis for V,, as you can check. 
 

I 
I 



~xercises 
 

1 	 1. Consider the subspaces of V3 listed in Exercise 2, p. A6. Find bases for 

each of these subspaces, and firid spanning sets for them that are not bases.-
2. 	 Check the details of Example 14. 

3. Suppose W has dimension k. (a) Show that any independent set in 
 

w consisting of k vectors spans W. (b) Show that any spanning set for W 
 

consisting of k vectors is independent. 
 

4. Let S = I A ~ ,.. . ,A > be a spanning set for W. Show that S m 
 

contains a basis for W. [Hint: Use the argument of Theorem 5.1 

5. ...,G be an independent set in Vn . Show that this Let IA;, 

set can be extended to a basis for Vn . [Hint: Use the argument of Theorem 5 .1  
  

6 .  If V acd W are suSspaces of Vn and Vk, respectively, a 

function T : V + W  is called a linear transformation if it satisfes the usual 

linearity properties: 
i 	 T(X + Y) = T(X) + T(Y), 

If T is one-to-one and carries V onto W, it is called dl: linear. 
 

isomorphism of vector spaces. 
 

Stippose All.. .,A,, is a basis for V; let B1p.afBk be arbitrary 

vectors of W. (a) Slim? there exists a linear transformation T : V + W  

such that T(Ai) = Bi fc>r all i. (b) Show this linear transformation is unique. 

7. L e t  W be a subspace of Vn: let Al,...,% be a basis for W. 
Let X, Y be vectors of W. Then X = 2xjAi and Y = 2 yiAi for unique 
scalars xi m d  y.. These scalars are called the camponents of X and Y,- 1 

respectively, relative to the basis Aif...f\. 
 

(a) Note that 	 and Conclude 

that the function T : Vk --) W defia~d by T(xl,...,%) = 'fxiAi is a 
 

1 inear isomorphism . 
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A17 
 

(b) Suppose that the basis A ,. is an orthonormal basis. Show 

that X*Y = 2xiYi . Conclude that the isomorphism T of (a) preserves the 
dot product, that is, T(x).T(Y) = X*y . 

8. Prove the following: 
 
. b e 7  

Theorem. If W is a subspace 'L 
of Vn, then W has an orthonormal basis. 
 

Froof. Step 1. Let B1,...,B be mutually orthogonal non-zero vectors 
m 

in Vn ; let Am+l be a vector not in L(B l,...,B m). Given scalars 

cl,...,c letm '  

-- A ~ + ~  " ++ C1B1 + CmBm

Bnt+l 
 

Show that Bmcl is different from 2 and that L(B1,. ..,B ,B 
m m+l) = 

L(B~,...,Bm,Am+l) - Then show that the ci mmy be so chosen that Bm+l is 

orthogonal to each of B ..,B, . 
Steep 2. Show that if W is a subspace of Vn of positive dimension. 

then W has a basis consisting of vectors that are mutually orthogonal. 

[Hint: Proceed by induction on the dimension of W.] 

Step 3. Prove the theorem. 

Gauss-Jordan elimination 
 

If W is a subspace of Vn, specified by giving a spanning set for 
 

W, we have at present no constructive process for determining the dimension 
 

of W nor of finding a basis for W, although we bow these exist. There 
 

is a simple procedure for carrying out this process; we describe it nw.  
  

~efinitfon. The rectangular a r r G  of numbers 
 



! is called a matrix of size k by n. The number aij is 

th
called the entry of A in the i- row and j-th column. 

Suppose we let Ai. be the vector 

for i = 1,. ..lc. Theh Ai is just the ith row of the matrix A. The 

subspace of Vn spanned by the vectors A l l...,% is called the row space 

of the matrix A. 

WE now describe a procedure for determining the dimension of this space. 
 

It involves applying operations to the matrix A, of the following types: 
 

(1) Interchange two rows of A. 
 

(2) Replace row i of A by itself plus a scalar multiple of another row, 
 

say rcm m. 
 

(3) Multiply row i of A by a non-zero scalar. 

These operations are called the elcmentary & operations. Their usefulness cclmes 

from the following fact: 

Theorem 6. Suppose B is the matrix obtained by applying a sequence 

of elementary row operations to A,successively. Then the row spaces of 

A =d . B are the same. 

--Proof. It suffices to consider the case where B is obtained by 

applying a single row operation to A. Let All...,% be the rows of A, 
 

and let BI,  ...,Bk be the rows of 8. 

If the operation is of t y p  ( I ) ,  these two sets of vectors are the 

same (only their order is changed), so the spaces they span are the same. 

If the operation is of type (3) ,  then 

B i = c A i  and B = A  for j # i.
j j 



Clearly, any linear combination of B1,...,Bk can be written as a linear \ 

combination of Al....,+ Because c # 0 ,  the converse is also true. 

Finally, suppose the operation is of type (2). Then 

Bi = Ai + dAm m d  B i = A  for j f i .  
J j 
 

Again, any linear combination of Bl,...,Bk can be written as a linear 

combination of Al. ...,+ Because 

and 
 
A. = B

3 j for j # i , 
 
the converse is also true. a 
 

The Gauss-Jordan procedure consists of applying elementary row operations 

to the matrix A until it is brought into a form where the dimension of its 

row space is obvious. It is the following: 
-

I G a u s s J o r d a n  elimination. Examine the first column of your matrix. 

I (I) If this column consists entirely of zeros, nothing needs to ba I 
done. Restrict your attention now to the matrix obtained by deleting the 

first column, and begin again. 

% (11) If this column has a non-zero entry, exchange rows if necessary 
 

to bring it to the top row. Then add multiplesof the top row to the lower 

rows so as to make all remaining entries in the first column into zeros. 

Restrict your attention now to the matrix obtained by deleting the first 

column and first row, and begin again. 
 

The procedure stops when the matrix remaining has only one row. 
 

k t  us illustrate the procedure with an example. 
 



Pr-oblem. Find the dimension of the row space of the matrix 
 

Solution. First step. Alternative (a) applies. Exchange rows (1)-
and ( 2 ) ,  obtaining 

,
! Replace row (3) by row (3) + row ( 1 ) ; then replace (4)by (4)+ 2 times ( I) . 

Second step. Restrict attention to the matrix in the box. (11) applies.-
Replace row (4) by row (4)- row (2) , obtaining 

Third step. Restrict attention to the matrix in the box. (I) applies,
-L_. 

so nothing needs be done. One obtains the matrix 
 



--Fourth step. Restrict attention to the matrix in the box. 
 (11) applies. 

Replace row (4) by row (4)- 77 row (3) , obtaining 

The procedure is now finished. The matrix we end up with is in what is called 
 

echelon or "stair-stepUfom. The entries beneath the steps are zero. And 
 
__3 

the entries -1, 1, and 3 that appear at the "inside cornerst1 of the stairsteps 
 
i 

are non-zero. These entries that appear at the "inside cornerswof the stairsteps 

are often called the pivots in the echelon form. 

Yclu can check readily that the non-zero rows of the matrix B are 

independent. (We shall prove this fact later.) It follows that the non-zero rows 

of the matrix B form a basis for the row space of B, and hence a basis for 

the row space of the original matrix A. Thus this row space has dimension 3. 

The same result holds in general. If by elementary operations you 
 

reduce the matrix A to the echelon form B, then the non-zero rows are B 
 

are independent, so they form a basis for the row space of B, and hence a 
 

b~.sisfor the row space of A. 

Now we discuss how one can continue to apply elementary operations to 

1 reduce the matrix B to an even nicer form. The procedure is this: 



Begin by considering the last non-zero row. By adding multiples of this row 
 

to each row above itr one can bring the matrix to the form where each entry lying 
 

above the pivot in this row is zero. Then continue the process, working now 
 

with the next-to-last non-zero row. Because all the entries above the last 
 

pivot are already zero, they remain zero as you add multiples of the next-to- 
 

last non-zero row to the rows above it. Similarly one continues. Eventually 
 

the matrix reaches the form where all the entries that are directly above the 
 

pivots are zero. (Note that the stairsteps do not change during this process, 
 

nor do the pivots themselves.) 
 

Applying this procedure in the example considered earlier, one brings 
 

the matrix B into the form 
 

Note that up to this point in the reduction process , we have used only 

elementary row operations of types (1) and (2). It has not been necessary to 

multiply a row by a non-zero scalar. This fact will be important later on. 

WE?are not yet finished. The final step is to multiply each non-zero 
 

row by an appropriate non-zero scalar, chosen so as to make the pivot entry 
 

into 1. This we can do, because the pivots are non-zero. At the end of 
 

this process, the matrix is in what is called reduced echelon form. 
 

The reduced echelon form of the matrix C above is the matrix 
 



-- 

As we have indicated, the importancs of this process comes from the 
 
'! 

following theorem: 
 

Theorem 7. Let A be a matrix; let W be its row space. Suppose 
 

we transform A by elementary row operations into the echelon matrix B, 
 

or into the reduced echelon matrix D. Then the non-zero rows of B 
 

are a basis for W, m d  so are the non-zero rows of D. 
 

Pr-oof. The rows of B span W, as we noted before; and so do the 

rows of D. It is easy to see that no non-trivial linear combination of the 

rmn-zero rows of D equals the zero vector , because each of these rows 

has an entry of 1 in a position where the others all have entries of 0. 

Thus the dimension of W equals the number r of non-zero rows of D. 

This is the same as the number of non-zero rows of B . If the rows of B 

\ifre not independent, thon one would equal a linear combination of the others. 

Piis would imply that the row space of B could be spanned by fewer than 
\ 

r rcws, which would imply that its dimension is less than r. 
 

Exercises 
 

I. Find bases for the row spaces of the following matrices: 
 

2. Reduce the matrices in Exercise 1 to reduced echelon form. 



*3. Prove the following: 
 

P~eorern. The reduced echelon form of a matrix is unique. 
 

Proof. Let D and D1 be two reduced echelon matrices, w5ose 
 

rows span the same subspace W of Vn. We show that D = D'. 

Let R be the non-zero rows of D ; and suppose that the 

pivots (first non-zero entries) in these rows occur in columns jl,...,j 
k t  
  

respectively. 
 

(a )  =ow that the pivots of D1 wrur in the colwols jl,...,jk. 

[Hint: Lst R be a row of Dl; suppose its pivot occurs in column p. We 

have R = c R + ... + c& for some scalars ci . (Why?) Show that 1 1  

ci = 0 if ji< p. Derive a contradiction if p is not equal to any of 

(b) If R is a row of D1 whose pivot occurs in columr.~. jm , show 

that R = Rm. [Hint: We have R = c.R1 1  + ... + c k s  for some scalars ci g  

Show that ci = 0 for i Z m, and c m = 1.1 



parametric equations -of lines and planes -in Vn 
 -

Given n-tuples P and A, with A # Q, the -line 
through P determined -by A is defined to be the set of all 
 

points X such that 
 

for some scalar t. It is denoted by 
 

L ( P ; A ) .  The vector A is called a direction vector for the 

line. Note that if P = 2, then L is simply the 1-dimensional subspace 

of Vn spanned by A. 

,, ' 

The equation ( * )  is often called a parametric equation 

for the line, and t is called the parameter in this equation. 

As t ranges over all real numbers, the corresponding point X 

ranges over all points of the line L. When t = 0, then X = P; when 

t = 1, then X = P + A; when t = $, then X = P + %A; and so on. All 

these are points of L. 

Occasionally, one writesthe vector equation out in scalar 
 

form as follows: 
 



-- - - 
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where P = p , , p n  and A = (al,...,a ) .  These are called 
n 
 

the scalar parametric equations for the line. 
 -
Of course, there is no uniqueness here: a given line can 
 

2 
 

be represented by many different parametric equations. The 


following theorem makes this result precise: 


Theorem 8. The lines L(P;A) and L(Q:B) are equal -if 
-and only - have a point - and A is parallel -to B.if they - - in common - -

-- L(P;A) L(Q;B), then the lines obviously have a pointProof. If = 

in comn. Since P and P + A lie on the first line they also lie on 

the second line, so that 
 

for distinct scalars ti and t2. Subtracting, we have A = (t2-tl)B, so 

A is parallel to B. 

Conversely, suppose the lines intersect in a point R, and suppose 

A and B are parallel. We are given that ­

for some scalars tl ard t2, and that A = cE for some c # 0 .  We can 

solve these equations for P in terms of Q and B: 

P = Q+t2B- tlA = Q + (t2-tl&JB. 

Now, given any point X = P + tA of the line L(P;A), WE can write 

X = P + tA = Q + (t2-tlc)B+ tcB. 

Thus X belongs to the line L(Q;B). 
Thus every point of L(P;A) belongs to L(Q:B) . The 

symmetry of the argument shows that the reverse holds as well. O 

Definition. It follows from the preceding theorem that 

given a line, its direction vector is uniquely determined up to 

a non-zero scalar multiple. We define two lines to be parallel 



-- -- - 

- - - 
- --

I 
if t h e i r  d i r e c t i o n  v e c t o r s  a r e  p a r a l l e l .  

Corollary 9. D i s t i n c t  p a r a l l e l  l i n e s  cannot  i n t e r s e c t ,  

Corollary 10 . Given --l i n e  L and a  p o i n t  Q ,  t h e r e- a - - -is  

e x a c t l y  one l i n e  c o n t a i n i n g  Q t h a t  i s  p a r a l l e l  t o  L. 

Proof .  Suppose L is t h e  l i n e  L ( P ; A ) .  Then t h e  l i n e  

L(Q;A) c o n t a i n s  Q and i s  p a r a l l e l  t o  L. By Theorem 8 ,  any 

o t h e r  l i n e  c o n t a i n i n g  Q and p a r a l l e l  t o  L i s  equa l  t o  t h i s  

one. 0 

Theorem 11. Given two d i s t i n c t  p o i n t s  P and Q ,  

t h e r e  i s  e x a c t l y  one l i n e  c o n t a i n i n g  -them. 

Proof .  L e t  A =  Q - P ;  t hen  A #  -0. The l i n e  L ( P ; A )  

c o n t a i n s  bo th  P ( s i n c e  P = P + OA) and Q ( s i n c e  

Q = P + L A ) .  

Now suppose L ( R ; B )  i s  some o t h e r  l i n e  c o n t a i n i n g  P 

and Q. Then 

f o r  d i s t i n c t  scalars tl and t2. It fo l lows  t h a t  

s o  t h a t  the v e c t o r  A = Q - P i s  p a r a l l e l  t o  B. I t  fo l lows  

from Theorem ' 8  t h a t  

Now we.study planes i n  V,. 



- - - 
-- - --  - 
- - - - 

Def in i t ion .  I f  P i s  a po in t  of Vn and if. A and 

B a r e  independent vec to r s  of V n r  w e  def i n e  the  plane through 

P determined 2 A -and B t o  be t h e  s e t  of a l l  p o i n t s  X of 

t h e  form 

where s and t run through a l l  r e a l  numbers. We denote t h i s  

plane by M ( P ; A , B ) .  

The equat ion ( * )  i s  c a l l e d  a parametr ic  equat ion f o r  t h e  

plane,  and s and t a r e  c a l l e d  t h e  parameters i n  t h i s  equa- 

t i o n .  I t  may be w r i t t e n  o u t  a s  n s c a l a r  equat ions,  i f  des i red .  

When s = t = 0, then X = P; when s = 1 and t = 0, then X = P + A; when 
 

s = 0 and t = 1, then X = P + B; and SO on. 
 

Ncte that if P = 2, then t h i s  plane is j u s t  the 2-dimensional subspace 

of Vn span&: by A and B. 

J u s t  as f o r  l i n e s ,  a plane has many d i f f e r e n t  parametr ic  

r ep resen ta t ions .  More p r e c i s e l y ,  one has t h e  following theorem: 

Theorem 12. The p lanes  M(P;A,B)  and M(Q:C,D) are 

equa l  i f  and only i f  they have a p o i n t  i n  common and t h e  l i n e a r  

span of A and B equa l s  t h e  l i n e a r  span of C and D.  

-Proof.  I f  t h e  p lanes  a r e  equa l ,  they obviously have a 

,/1/ 
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point in comn. Fcrthermore, since P and P + A ard P + B all lie 
 

on the first plane, they lie on the second plane as well. Then 
 

P 	B Q + s3c + tp,+ = 

are some scalars s ar-d t Subtracting,we see that 
i i' 

A = (sZ-sl)C + (t2-tl)Df 

B (s3-s1)C + (t3-tl)D. 

Thus A and B lie in the linear span of C and D. Symmetry shows that 

C and D lie in the linear span of A and B as well. Thus these linear 

spans are the same. 

Conversely, suppose t h a t  the  planes i n t e r s e c t  i n  a po in t  

R and t h a t  L(A,B) = L(C,D). Then 

P + s l A + t B  = R = Q+s2C+t2D1 
 

for some scalars si ard ti. We can solve this equation for P as follows: 
 

P = Q + (linear combination of A,B,C,D). 

Then if X is any point of the first plane M(P;A,B), we have 
 

X 	= P + s A + t B  for some scalars s and t, 

= Q + (linear combination of A,B,C,D) + sA + tB 

= Q + (linear combination of CID), 

since A and B belong t o  L(c,D), 

Thus  X belongs to M (Q;C1D) . 
Symmetry of  t h e  argument shows t h a t  every po in t  of 

M(Q;C,D) belongs t o  M(P;A,B) a s  w e l l .  0 

Defin i t ion .  Given a plane M = M(P;AtB), the vec to r s  

A and B a r e  n o t  uniquely determined by M, but t h e i r  l i n e a r  

span is. W e  say t h e  p lanes  M(P;A,B) and M(Q;C,D) a r e  . 

p a r a l l e l  i f  L(A,B) = L(C,D). 



- - -  
- -- 

i 

Corollary 13. TKOdistinct parallel planes cannot intersect. 

corollary 14. Given -a plane M and a point Q, there -is 
exactly one plane containinq Q that is parallel -to M .  

Proof. Suppose M = M ( P ; A , B )  . Then M(Q;A,B) is a 

plane that contains Q and is parallel to M. By Theorem 12 

any other plane containing Q parallel to M is equal to 

this one. 

Definition. WE'say three points P,Q,R are collinear if they lie 

on a line. 

Lemma 15. The points P,Q ,R are collinear if and only if the vectdrs 

Q-P =d R-P are dependent (i.e., parallel). 

Proof. The line L(P; Q-P) is the one containing P and Q, and 

theliae; L(P;R-P) istheonecontaining P and R. If Q-P m d  R-P 

are parallel, these lines are the same, by Theorem .8,so P, Q, and R 

are collinear. Conversely, if 'P, Q, and R are collinear, these lines must 

be the same, so that Q--P and ' R-P must be parallel. a, 
Theorem 16--. .' Given three -non-collinear points P, Q, R, 

there -is exactly -one plane containing -them. 
Proof. Let A = Q - P and B = R - P; then 

A and B are independent. The plane M(P; A,B) cGntains P and P + A = Q 

and P + B = R *  

Now suppose M(S;C,D) is 'another plane containing P, 

Q, and R. Then 



'I 	 for some scalars si and ti . Subtracting,we see that the vectors 

Q - P = A and R - P = B belong to the linear span ~f f2and D. By 

symmetry, C and D belong to the linear span of A ad B. Then Theorem 

12 implies that these two planes are equal. 

Exercises 
 

1. We say the line L is parallel to the plane 

M = M(P;A,B) if the direction vector of L belongs to L(A,B). 

Show that if L is parallel to M and intersects M, then L 

is contained in M. 

2. Show that two vectors Al and A2 in Vn are 
 

linearly dependent if and only if they lie on a line through 
 

the origin. 
 

3. Show that three vectors All A2, A3 in Vn are 

linearly dependent if and only if they lie on some plane through 

the origin. 

Let A 	 = 1 - 1 0  B = (2,0,1). 

(a) Find parametric equations for the line through P and Q, and 

for the line through R with direction vector A. Do these lines intersect? 

(b) Find parametric equations for the plane through PI Q, and 

R. and for the plane through P determined by A and B. 
 

5 .  Let L be the line in Vj through the points P = (1.0.2) and 

Q = (1,13). Let L1 be the line through 2 parallel to the vector 

A = ( 3 - 1 )  Find parametric equations for the line that intersects both L 

and Lf and is orthogonal to both of them.
I 



-- 
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Parametric equations for k-planes Vn. 

Following t h e  p a t t e r n  f o r  l i n e s  and p l anes ,  one can d e f i n e ,  more 

g e n e r a l l y ,  a  k-plane i n  Vn a s  fo l lows:  

D e f i n i t i o n .  Given a p o i n t  P of  Vn and a se t  

A ~ , . . . , A ~  of  k independent  v e c t o r s  i n  V,, w e  d e f i n e  t h e  

k-plane through P determined & Al, ....Ak t o  be  t h e  set  o f  

a l l  v e c t o r s  X of t h e  form 

f o r  some s c a l a r s  ti. W e  denote  t h i s  set  o f  p o i n t s  by 

M(P;A1,.. ., A k ) .  

Sa id  d i f f e r e n t l y  . X i s  i n  t h e  k-plane M (P;Al,. . .,Ak' 
i f  and on ly  i f  X - P i s  i n  t h e  l i n e a r  span of  A1, ...,Ak. ­

Note that if P = 2, then t h i s  k-plane is just the k- dimensional 

1 linear subspace of Vn s p ~ e dby A1, ...,%. 
J u s t  as w i t h  t h e  c a s e  o f  l i n e s  (1-planes)  and p l a n e s  

(2 -p l anes ) ,  one has  t h e  fo l lowing  r e s u l t s :  

Theorem 12, Let MI = M(P;A and 3 M ( Q ; B ~ '= 1 * * * 1 ~k1 

be two k-planes in  Vn. Then M1 = M2 i f  and only if they have a point in  

commn and the linear span of A I I . . . I %  equals the linesr span of B1, ...,Bk. 
Definition. We say that the k-planes M1 and M2 of this  theorem 

are paral le l  if  the linear span of A I I . . - I %  equals the linear span of 

B1?...,Bk. 
Theorem 18. Given k-plane M Vn 5 p o i n t  

Q ,  t h e r e  -i s  e x a c t l y  -one k-plane -i n  V, c o n t a i n i n g  Q 
4 

p a r a l l e l  -t o  M.. 
. ..­

Lemma 19. Given points POt..,Pk in Vn, they are contained in  

a plane of dimension less than k i f  and only i f  the vectors 



I 

P1 - Po,..., Pk- Po are dependent. 
 

Theorem 2Q. Given k+l distinct points Po,...,Pk in Vn. 
 

If these points.do not lie in any plane of dimension less than k, tten 
 

there is exactly onek-plane containing them; it is the k-plane 
 

More generally, we make the following definition: 
 

-Definition. If M1 = M(P:Al, ...,$) is a k-plane, and 

M2 = M(Q;B~,...,Bm ) is an m-plane, in Vn , and if k s  m, we say 

MI is parallel to M2 if the linear span of Al,...,% is contained 

in the linear span of B1,...,B, . 

-Brercises 

1. Prove Theorems 17 and 18. 
 

2. Prove Theorems 19 and 20. 
 

3. Given the line L = L(Q;A) in Vj . where A = (1.-1,2). 

Find parametric equations for a 24lane containing the point P = (1,1,1) 

that is parallel to L. Is it unique? C m  you find such a plane containing 

both the point P and the point Q = (-1,0,2)? 

4. Given the 2-plane MI. in V4 containing the points P = (1,-I, 2,-1) 

and Q = (O.l,l,O)wd R = (lrl,0,3).Find parametric equations for a 3-plane 

in Vq that containsthe point S = (l,l,l.) and is parallel to MI. 

Is it unique? Can you find such a 3-plane thatcontains both S and the 

point T = (0,1,0,2)? 





Matrices 


We have already defined what we mean by a matrix. In this section, 


we introduce algebraic operations into the set of matrices. 


Definition. If A and B are two matrices of the same size, say 

k by n, we define A t B to be the k by n matrix obtained by adding 

the corresponding entries of A and B, m d  we define cA to be the matrix 

obtained from A by multiplying each entry of A by c. That is, if aij 

are the entries of A and B, respectively, in row i and column 

and bij 
j ,  then the entries of A + B and of cA in row i and column j are 

aij bij 
and caij ' 

respectively. 

PJot? that for fixed 1: ar:d n , the set of all k by n matrices 

satisfies all the properties of a linear space. This fact is hardly 

surprising, for a k by n matrix is very much like a Ic-n tuple; 

that only difference is that the components are written in a rectangular array 

instead of a linear array. 

Unlike tuples, however, matrices have a further operation, a product 


operation. It is defined as follows: 


Cefinition. If A is a k by n mtrix, and B is an n by 

p matrix, we define the product D = A * B of A and B to be the matrix 

of size k by p whose entry dij in row i and column j is given by 

the formula 

n 


Here i = k and j = I,...,p. 



--

- - -

The entry dij is computed, roughly speaking, by tak­

ing the "dot product" of the 1-'th row of A with the j-th 

column of B .  Schematically, 

This definition seems rather strange, but it is in fact e,xtremely 

useful. Motivation will come later! One important justification for this 

definition is the fact that this product operation satisfies some of the familar 

"laws of algebra" : 

Theorem '1. Matrix-multiplication has the following properties: k t  

A, B, C ,-Dbe matrices. 

(1) (Distributivihy) If A-(B + C) is defined, then 

Similarly; .- (B + is defined, thenif C). D - .­


(El + C)* D = B * D  + C.D. 


(2) (Homogeneity) If- A * B  -is defined, then 

(3) (Associativity) -If - B6C are-defined,thenA * B  and .­



- - -

(4) (Existenceof identities) Fcr- -each m, there is an m by m 

I . that for A
-matrix ms ~ c h-- - matrices and B, we have 

I .A = A and B *Im = B 
li'i 

whenever these products are defined.
--. ­

Proof. We verify the first distributivity formula. In order for 

B + C to be defined, B and C must have the same size, say n by p. 

men in order for A-(B+ C) to be defined, A must have n columns. Suppose 

A has size 'x by n. .Then A - B  and A - C  aredefinedand have size k 

by p; thus their sum is also defined. The distributivity formula now follows 

from the equation 

1
n 

a ( b . + c  ) = In a b + In a c 
s=l is SJ sj s=l is sj s=l is sj' 


The other distributivity formula and the homogeneity formula are proved similarly. 

We leave them as exercises. 

Now let us verify associativity. - .  
If A is k by n and B is n by p, then 


A B is k by p. The product (AeB) C is thus defined 


provided C has size p by q. The product A (B*C) is 


defined in precisely the same circumstances. Proof of equality 

I (  

is an exercise in summation symbols: The entry in row i and 


column j of (A*B) C is 


and the corresponding entry of A ( B = C )  is 



These t w o  expressions are equal. 

Finally, we define matrices that act as identity elements. 
I* 

Given m, let Im be the m by rn matrix whose general entry is 4j, 
where & = 1 if i = j and 6: = 0 if i # j. The matrix Im is a square 

1j lj 

matrix that has 1's down the "main diagonal" and 0's elsewhere. For instance, 

I4 is the matrix 


Now the product Im*A is defined in the case where A has m rows. In 

this case, the general entry of the product C = - A  is given by the equation Im 


Let i and j be fixed. Then as s ranges from 1 to m, a1.lbut one 

of the terms of this sunanation vanish. The only one that does not vanish 

is the one for which s = i, and in that case &. = 1. We conclude that 
1s 


0+. . .+ 0 + TiQ l j  + O+ . . a +  0= Q5.c = ij 

Ar, entirely similar proof shows that B * Im = B if B has rn columns. 

Remark. I f  A B is d e f i n e d ,  t h e n  B A need no t  be  

d e f i n e d .  And even i f  it i s  d e f i n e d ,  t h e  two p r c d u c t s  need n o t  

b e  equa l .  For example, 



Remark. A natural qestion to ask at this point concerns the existence 


of multiplicative inverses in the set of matrices. WE'shall study the answer 


to this question in a later section. 


Exercises 


1. Verify the other half of distributivity. 


2 .  Verify homogeneity of matrix multiplication. 

3. Show the identity element is unique. [Hint: If I and I; 

are two possible choices for the identity element of size m by m, compute 

1; I; , I  

4. Find a non-zero 2 by 2 matrix A such that A * A  is the zero 

matrix. Conclude that there is no matrix B such that B O A = 12. 

5. Consider the set of m by m matrices; it is closed under addition 

and multiplication. Which of the field axioms (the algebraic axioms that the 

real numbers satisfy) hold for this set? (Such an algebraic object is called 

in modem algebra a "ring with identity.I ! )  



Systems -of linear equations 

Given numbers aij for i = 1 . k and j = l,--=,n, 

and given numbers cl,,c 
k , we wish to study the following, which is called 

a system of k linear equations 9 n unknowns: 

A solution of this system is a vector X = (xl,...,x ) that satisfies each n 

equation. The solution -set of the system consists of all such vectors; it is 

a subset of Vn . 
We wish to determine whether this systemhas a solution, and if so, what 

the nature of the general solution is. Note that we are not assuming anything 

about the relative size of k and n; they may be equal, or one may be larger 

than the other. 

Matrix notation is convenient for dealing with this systemof equations. 

Let A denote the k by n matrix whose entry in rcw i ar?d column j is 

a Let X and C denote the matrices ij 
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These are matrices with only one column; accordingly, they are called column 

matrices . The system of equations ( * )  can now be written in matrix form as 

A solution of this matrix equation is now, strictly speaking, a column matrix 


rather than an n-tuple. However, one has a natural correspondence 


between n-tuples and column matrices of size n by 1. It is a one-to-one 


correspondence, and even the vector space operations correspond. What this means is 


that we can identify Vn with the space of all n by 1 matrices if we wish; 


all this amounts to is a change of notation. 


Representing elements of Vn as column matrices is so convenient that 

we will adopt it as a convention throughout this section, whenever we wish. 

Example 1. Consider the system 


[Here we use x, y, z for the unknowns instead of xl, x2, 

X 3 r  for convenience.] This system has no solution, since 

the sum of the first two equations contradicts the third 

equation. 



-D-ample2. Consider the system 

2 x + y + z = l  

This system has a solution; in fact, it has mora than one solution. In 


solving this sytem, we can ignore the third equation, since it is the sum of the 


-
first two. Then we can assign a value to y arbitrarily, say y = t, and solve * ­
the first two equations for x and z. We obtain the result 

The solution set consists of all matrices of the form 


Shifting back to tuple notation, we can say that the solution set consists of 


all vectors X such that 


This expression shows that the solution set is a line in 
V3, and in "solvingt1 


the system, we have written the equation of this line in parametric form. 


Now we tackle the general problem. We shall prove the following 

result: 

Sbppose one is given a system of k linear equations in n unknowns. 

Then the solution set is either (1) empty, or (2) it consists of a single point, 

or (3) it consists of the points of an m-plane in Vn, for some m7O. 

In case (11, we say the system is inconsistent,meaning that it has no solution. 



I 

In case ( 2 ) ,  the solution is unique. in case ( 3 ) ,  the system has infinitely 

many solutions. 

F;C shall apply Gauss-Jordan elimination to prove these facts. The 

crucial result we shall need is stated in the following theorem: 

Tlieorem 2, Consider the system of equations A'X = C, where A is 

a k by' n matrix and C is a k by 1 matrix. Let B be the matrix obtained by 

applying an elementary row operation to A, arrd let C' be the matrix obtained 

by applying the same elementary row operation to C. Then the solution set 

of the system B-X= C' is the same as the solution.setofthe system A'X = C. 

Proof. Exchanging rows i and j of both matrices has the effect of 

simply exchanging equations i and j of the system. Replacing row i by itself 

plus c times row j has the effect of replacing the ith equation by itself 

plus c times the jth equation. And multiplying rcw i by a non-zero scalar 

d has the effect of multiplying both sides of the ith equation by d. Thus each 

solution of the first system is also a solution of the second system. 

Nc~wwe recall that the elementary operations are invertible. 

Thus the system A'X = C can be obtained by applying an elementary operation to 

both sides of the equation BwX= C1. It follows that every solution of the 

second system is a solution of the first system. 

Thus the two solution sets are identical. a 

WE*consider first the case of a homogeneous system of equations, that is, 


a system whose matrix equation has the form 


A G X  = 9 . 
In this case, the system obviously has at least one solution, namely the trivial 

solution X = -0 .  Furthermore, we know that the set of solutions is a 

linear subspace of Vn , that is, an m-plane through the origin for some m. 

We wish to determine the dimension of this solution space, and to find a basis 

for it. 



--

- -

Dflfinition. Let A be a matrix of size k by n. Let W be the row 

space of A; let r be the dimension of W. Then r equals the number of non-zero 

rows in the echelon form of A. It follows at once that r k. It is also 

true that r 5 n, because W is a subspace of Vn . The number r is called 

the rank of A (or sometimes the row rank of A). 

Theorem -3. Let A be a matrix of size k by n. Let r be the rank 

of A. Then the solution space of the system of equations A 0 X  = 2 is 

a subspace of Vn of dimension n - r. 

Proof. The preceding theorem tells us that we can apply elementary 

operations to both the matrices A and 0 without changing the solution set. -

Applying elementary operations tcr 0 leaves it unchanged, of course.
-

So let us apply elementary operations to A so as to bring A into 

reduced echelon form D, and consider the system D-X= Q . The number of 

non-zero rows of D equals the dimension of the row space of A, which is r. 

Now for a zero row of D, the corresponding equation is automatically satisfied, no 

matter what X we choose. Orily the first r equations are relevant. 

Suppose that the pivots of D appear in columns jl,...,j Let J 
r' 

denote the set of indices lj ,...,jr\ and let K consist of the remaining indices 

from the set {I,. ..,n). Each unknown x for which j is in J appears with a 
j 

non-zero coefficient in only one of the equations of the system D-X= 0. 

Therefore, we can Itsolveufor each of these unknowns in terms of the remaining 


unknowns xk , for k in K. Substituting these expressions for x , ..., x 
jl jr 

into the n-tuple X = (xl,...,x ) ,  we see that the general solution of the n 

system can be written as a vector of which each component is a linear combination 

of the xk , for k in K. (Of course, if k is in K, then the linear 

cathination that appears in the kth component consists merely of the single 

term 9! ) 



- k!t us pause to consider an example. 

EJ-ample3 . Let A be the 4 by 5 matrix given on p.A20. The-

equation A'X = -0 represents a system of 4 equations in 5 unknowns. Nc~w A 

reduces by row operations to the reduced echelon matrix 

Here the pivots appear in columns 1,2 and 4; thus J is the set 11,2.4] and 


K is the set f3.53 . The unknowns xl. x2, and x4 each appear in only 


one equation of the system. We solve for theese unknowns in terms of the others 


as follows: 

X1 = 8x3 + 3x5 

X* = -4x3 ­
2x5 

x, = 0. 

The general solution can thus be written (using tuple notation for convenience) 


-The solution space is thus spanned by two vectors (8,-4.1,O.O) and (3,-2,0.0,1). 

The same procedure we followed in this example can be followed in 

general. Once we write X as a vector of which each component is alinear combination 

of the xk , then we can write it as a sum of vectors each of which involves 

only one of the unknowns 5 , and then finally as a linear combination, with 

coefficients %I of vectors in Vn . There are of course n - r of the 



unknowns , and hence n - r of these vectok. 

It follows that the solution space of the system has a spanning set 

consisting of n - r vectors. We now show that these v~ctorsare independent; 

then the theorem is proved.. To verify independence, it suffices to shox? that if xe 

take the vector X, which equals a linear combination with coefficents % 
of these vectors, then X = 0 if and only if each % (for k in K)-

equals 0. This is easy. Consider the first expression for X tkat we wrote down, 

where each component of X is a linear combination of the unknowns rc-
The kth component of X is simply 5 . It follows that the equation X = 2 

implies in particular that for each k in K, we have % = 0. 

For example, in the example we just considered, we see that the equation 

X = -0 implies that x3 = 0 and x5 = 0 ,  because x.. 
3 

is the third component 

of X and x5 is the fifth component of X. 

This proof is especially interesting because it not only gives us the 


dimension of the solution space of the system, but it also gives us a method 


for finding a basis for this solution space, in practice. All that is involved is 


Gauss-Jordan elimination. 


Corollary& Let A be a k by n matrix. If the rows of A are 

independent, then the solution space of the system A-X = -0 has dimension n - k. a 
Now we consider the case of a general system of linear equations, of the 

form A'X = C . For the moment, we assume that the system has at least one 
solution, and we determine what the general solution looks like in this case. 

Theorem 5. Let A be a k by n matrix. Let r equal the rank of A.
-

If the system A*X = C has a solution, then the solution set is a plane in 

Vn of dimension m = n - r. 



Proof. Let X = P be a solution of the system. Then A-P = C . 
If X is a column matrix such that A'X = C, then A.(X - ?)  = 2 , and 

ccnversely. The solution space of the system A'X = 0 is a subspace of 'n-
of dimension m = n - r; let All...,A be a basis for it. Then X is a solution 

m 

of the system A'X = C if and only if X - P is a linear combination of the 

vectors Air that is, if and only if 

X = P + t A  t...1 1  tmAm
+ 

for some scalars ti. Thus the solution set is an m-plane in Vn a 


Nciw let us try to determine when the system A'X = C has a solution. 

One has the follow in^ general result: 

Theorem 6. k t  A be a k by n matrix. Let r equal the rank 

of A' 

(a) If r 4 k ,  then there exist vectors C in Vlc such that the 

system A'X = C has no solution. 

(b) If r = k, tl~enthe system A-X= C al~~ayshas a solution. 


Proof. We consider the system A'X = C and apply elementary row 

operations to both A. and C until we have brought A into echelon form 

. (For the moment, we need not yo all the hay to reduced echelon form.) Let 

C '  be the column matrix obtained by applying these same row operations to C. 

Consider the system B'X = C r .  

Consider first the case r < k. In this case, the last row at least of 

3 is zero. The equation corresponding to this row has the form 

where c' is the entry of C 1  in row k. If c' is not zero, there are no k k 

values of xl,...,x satisfying this equation, so the system has no solution. n 

# 



Let us choose C *  to be a k by 1 mstrix whose last entry is non-zero. 

Then apply the same elementary operations as before, in reverse order, to 

both B and C*. These operations transform B back to A; when we apply them 

to C*, the result is a matrix C such that the system A'X = C has no 

solution. 

Now in the case r = k, the echelon matrix B has no zero rows, so 

the difficulty that occurred in the preceding paragraph does not arise. We shall 

show that in this case the system has a solution. 

More generally, we shall consider the following two cases at the same 

time: Either ( 1) B has no zero rows, or (2) whenever the ithrow of B is zero, 

then the corresponding entry c* of C' is zero. We show that in either of i 

these cases, the system has a solution. 

Let US consider the system B - X  = C 1  ard apply further operations to 

both B and C', so as to reduce B to reduced echelon form D. Let C" 

be the matrix obtained by applying these same operations to C'. Note that the 

zero rows of B, and the corresponding entries of C', are not affected by these 

operations, since reducing B to reduced echelon form requires us to work only 

with the non-zero rows. 

Consider the resulting system of equations D'X = C t t .  We now proceed as 

in the proof of Theorem 3. Let J be the set of column indices in which the 

pivots of D appear, and let K be the remaining indices. Since each xi , 
2 


for j in J, appears in only one equation of the system, we can solve for each 

x in terms of the numbers c; a d  the unknowns . We can now assign 
j 

values arbitrarily to the \ and thus obtain a particular solution of the 

system. The theorem follows. 




The procedure just described actually does much more than was necessary 

to prove the theorem. It tells us how to determine, in a particular case, whether 

or not there is a solution; and it tells us,when there is one,how to express the 

solution set in parametric form as an m-plane in 
'n . 

Ccnsider the following example: 
-

E2:ample 4. Consider once again the reduced echelon matrix of Example 3: 


The system 


has no solution because the last equation of the system is 


On the other hand, the system 


does have,asolution. Fc~llowingthe procedure described in the preceding proof, 


we solve for the unknowns xl,x2,and x4 as follows: 


The general solution is thus the 2-plane in V5 specified by the parametric equation 



Remark. Solving the system A-X= C in practice involves applying 

elementary operations to A , and applying these same operations to C. 

A convenient way to perform these calculations is to form a new matrix from 

A by adjoining C as an additional column. This matrix is often called the 

auqmented matrix of the system. Then one applies the elementary operations to this 

matrix, thus dealing with both A and C at the same time. This procedure 

is described in 16.18 of vol. I of Apostol. 

-Exercises

1. Let A be a k by n matrix. (a) If k< n, show that the system 

A'X = -0 has a solution different from G.(Is this result familiar?) What 

can you say about the dimension of the solution space? (b) If k > n, show that 

therearevalues of C such that the system A'X = C has no solution. /--­

2, Ccnsider the matrix A of p. A23. (a) Find the general solution 

of the system AbX = 2. (b) Does the system A-X= C have a solution for 

arbitrary C? 

3.  Repeat Exercise 2 for the matrices C, D l and E of p. A23. 

4. &t B be the matrix of p. A23. (a) Find the general solution of 


the system .-.113.
= 

(b) Find conditions on a,b, and c that are necessary and sufficient for the 


system B-X= C to have a solution, where C = . [~int:What happens to 

C when you reduce B to echelon form?] 

5. Let A be the matrix of p. A20. Find conditions on a,b,c, and d 

that are necessary and sufficient for the system A'X = C to have a :solution, 

where 



---

\ @ k t  A be a by n matri::; let r be the rank of A: 
Let R be the set of all those vectors C of Vk fc,rwhich the system 

has a solution. (That is, R is the set of all vectors of the form 

A-X , as X ranges over Vn .) 

( a )  Show that R is a subspace of 
vk 


(b) Show that R has dimension r. [Hint: Let W be the solution 

space of the system A-X= 9 . Then W has dimension m = n - r. C oose 

a basis A f A for W. By adjoining vectors one at a time, extend m 
this to a basis Al,...,A ,B1,...,B for all of Vn . Show the vectors m r 
A.B1 , ..., A.3r span R; this follows from the fact that A.Ai = -0 for 

all i. Show these vectors are independent.] 


(c) Cclnclude that if r € k, there are vectors C in Vk such 

that the system A-X= C has no solution; while if r = kt this system 

has a solution for all C. (This provides an.alternate proof of Theorem 6.) 

@ Let A be a k by n tnztrix. The columns of A, when looked 

at as elements of Vk , span a subspace of Vk that is called the column 

space of A . The row space and column space of A are very different, 

but it is a totally unexpected fact that they have the same dimension ! Prove 

this fact as follows: Let R be the subspace of Vk defined in Exercise 

6. Show that R is spanned by the vectors A-Ei,...,A-En ; conclude 

that R equals the column space of A. 



Csrtesian equations of !:-planes in 
'n ' 

There are two standard ways of specifying a k-plane M in Vn. 

One is by an equation in parametric form: 

X = 2+tlA, + . . . +  t?<q.l;, 
L 


vI.ere A , . . . ,  ar2 in3ependent vectors in 'n . (If tkess vectors xere 

not independent, this equation would still specify an n-plane for some m, 

5ut some work would be required to determine m. We normally require the 

vectors to b2 independent 51 the parametric form of the equation of a ?<-plane.) 

bother way to specify a plane in is as the solution set of a 
Vn 


system of linear equations 


where the rows of A are independent. I f  A has size k by n, then 

the plane in question has dimension n - k. The equation is called a 

caretesian form for the equation of a plane. (If the rows of A were not 

independent, then the solutionsetwould be either empty , or an m-plane 

for some m, but some work would be required to determine m.) 

The- process of "solving" the system of equations A S X = C that 

we described in the preceding section is an algorithm for passing from a 

cartesian equation for M to a parametric equation for M. 0r.e can ask 

whether there is a process for the reverse, for passing from a parametric 

equation for M to a cartesian equation. Tk~eanswer is "yes," as we 

shall see shortly. The other question one might ask is, ''Ifnyshould one 

care?" The answer is that sometimes one form is convenient, and other times 

the other form is more useful. Particularly is this true in the case of 

3-dimensional space V3 , as we shall see. 



Dflfinition. Let A be a matrix of size k by n. Let 

be the rows of A; let W be the subspace of Vn they span. Now the vector 

X is a solution of the system A e X  = g if and only if X is orthogonal 

to each of the vectors 
Ai . This statement is equivalent to the statement 

that X is orthogonal to every vector belonging to W. The solution s2ace 

of this'system is for this reason sometimes called the orthoqonal complement ­

of W. It is often denoted W' (read "W perp".) 

We have the following result: 


Theorem 1, If W is a subspace of Vn of dimension k, then 

its orthogonal complement has dimension n - k. Fwthermore, W is the 

orthogonal complement of WI; that is, (WL ) I = W. 

Proof. Ttiat wL has dimension n - k is an imnediate consequence of 

Theorem 3 j  for W is the row space of a k by n matrix A with independent rows 

whence wL is the solution space of the system A - X  = 0.Ai , 
The space (WL)' has dimension n - (n - k) , by what we just proved. 

And it contdns each vector Ai (since Ai *X= -0 for each X in W I.) 

Therefore it equals the space spanned by , a 
Theorem Suppose a k-plane M in Vn is specified by the parametric 

equation 

X = P + t A + ... -I-tkq; I1 1  


where the vectors Ai are independent. Let W be the space they span; 

Land let B ,. El be a basis for W . If B is the matrix with rows rn 

B1,".,B then the equation B*(x-P) = 0 , Or 
m '  


is a cartesian equation for M. 



BiO 


Proof. The vector X lies in M if and only if X - P belongs to 

W. 	This occurs if and only if X - P is orthogonal to each of the vectors 

a ~ dthis occurs if and only if B*(X - P) = -0 .a
Bit 


The preceding proof actually tells us how to find a cartesian equation 

for M. 0r.e takes the matrix A whose rows are the vectors Ai; one finds 

a basis B1,...,B for the solution space of the system A - X  = 2, using
* m 

the Gass-Jordan algorithm; and then one writes down the equation B.X = BOP . - .  
k 

We now turn to the special case of V3, whose model is the familiar 

3-dimensional space in which we live. In this space, we have only lines 

(1-planes) and planes (2-planes) to deal with. A P ~we can use either the 

parametric or cartesian form for lines and planes, as we prefer. However, 

in this situation we tend to prefer: 

parametric form for a line, and 


cartesian form for a plane. 


Let us explain why. 


If L is a line given in parametric form X = P + tAI then A 

is uniquely determined up to a scalar factor. (The point P is of course 

not determined.) Tlie equation itself then exhibits some geometric information 

about the line; one can for instance tell by inspection whether or not 

two lines are parallel. 

Or1 the other hand, if M is a plane given in parametric form by the 

equation X = P + sA + tB , one does not have as much geometric information 

immediately at hand. However, 1st us seek to find a cartesian equation 

for this plane. We note. that the orthogonal complement of L(A,B) is 

one-dimensional, and is thus spanned by a single non-zero vector 



N = (a a2, a3) . We call N a normal vector to the plane M ; it is 

uniquely determined up to a scalar factor. (1n practice, one finds N by 

solving the system of equations 

A-N = 0 
-1 


B=N= -0 .) 

Then a cartesian equation for M is the equation 

If P is the point (pl,p2, p3) of the plane MI thisequation
' 

has the form 


( * )  al(xl - pl) + a2(x2 - p2) + a3(x3 - P3 ) = 0 .  

We call this the equation of the plane throuqh
-- p = (pll P2' p3) with 

normal vector N = (a a2, a3 1. 

WE have thus proved the first half of the following theorem: 

Theorem% If M is a 2-plane in V3, then M has a cartesian 

equation of the form 

a x  + a x  + a x  - b ,1 1  2 2  3 3  ­

where N = (al,a2, a3) is non-zero. Conversely, any such equation is 

the cartesian equation of a plane in V3; the vector N is a normal vector 

to the plane. 

Proof. To prove the converse, we note that this equation is a system 

consisting of 1 equation in 3 unknowns, and the matrix A = [a a a ] has1 2 3  

rank 1. Therefore the solution space of the system A.X = [b] is a plane 

of dimension 3 - 1 = 2. a 

Nctw we see why the cartesian equation of a plane is useful; it 

contins some geometric information about the plane. For instance, one can 

tell by inspection whether two planes given by cartesian equations are parallel. 



--

For they are parallel if and only if their normal vectors are parallel, 


and that can be determined by inspection of the two equations. 


Similarly, one can tell readily whether the line X = P + tA 

is parallel to a plane 1;  one just checks whether or not A is orthogonal 

to the normal vector of M. 


Mzny theorems of 3-dimensional geometry are now easy to prove. 


us consider some examples. 


Theorem 10. Three planes in V3 intersect in a single point 

if and only if their normal vectors are independent. 

Proof. Take a cartesian equation for each plane; collectively, 

they form a system A - X  = C of three equations in three unknowns. 

The rows of A are the normal vectors. The solution space of the system 

(which consists of the points common to all three planes) consists of a 

a single point if and only if the rows of A are independent.a 
---Theorem 11. Two non-parallel planes in V3 intersect in a straight 

line. 


Proof. Let Nl -X= and N2 -X= b2 be ~artesianequations for-- bl 

the two planes. Their intersection consists of those pints X that satisfy 

both equations. Since N and N2 are not zero and are not parallellthe1 

matrix having rows N1 aad N2 has rank 2. Hence the solution of this 

system of equations is a 1-plane in V, . 17 
Theorem & Let L be a line, and M a plane, in V,. If L is 

paralleLto M, then their intersection is either empty or all of L. If 


L is not parallel to M, then their intersection is a single pint. 


Proof. LFgt L have parametric equation X = P +.tA; let M have 

~artesianequation N-X= b. We wish to determine fcr what values of t 

the point X = P + tA lies on the plane M; that is, to determine the 

solutions of the equation 




Now if L is parallel to M I  then the vector A is perpendicular to 

the normal vector N to M; that is, N . A  = 0 .  In this case, the equation 

holds for all t if it happens that N.P = b, and it holds for no t 

if N-P # b. Thus the intersection of L and M is either all of L, or 

it is empty. 

On the other hand, if L is not parallel to M, then N - A  # 0. 

In this case the equation can be solved uniquely for t. Thus the intersection 

of L and M consists of a single point. a 

r Ex-ample 5. Ccnsider the plane M = M(P;A,B) in V3 , where 

P = (1, -7,0) and A = (1, 1 1) and B = (-1, 2, 0). TO find a normal 

vector N = (al,a2, a3) to M, we solve the system 

One can use the Gauss-Jordan algorithm, or in this simple case , proceed 

almost by inspection. One can for instance set a2 = 1. Then the second 

equation implies that al = 2: and then the first equation tells us that 1 
- a2 = -3. The plane thus has cartesian equation a3 = -a1 



Exercises 


1. The , solution set of the equation 

is a plane in V3; write the equation of this plane in parametric form, 


2. Write parametric equations for the line through (1,0,0)that 

is perpendicular to the plane x - x3 = 5.
1 


3. Write a parametric equation for the line through (0,5,-2)that 

is parallel to the planes 2x2 = x3 m d  5x1+ x -7x = 4 .
2 3 

4. Show that if P and Q are two points of the plane M I  then 

the line through P and Q is coniained in M. 
\ 

5. Write a parametric equation for the line of intersection of the 

planes of Exercise 3. 

6. Write a cartesian equation for the plane through P = (-1,0,2) 

and Q = (3,1,5) that is parallel to the line through R = (1,1,1)with 

direction vector A = (1,3,4).  

7. Write cartesian equations for the plane M(P;A,B) in V4, 

where P = (11 -11 0, 2) and A = (11 0, 1, 0) and B = (2, 1, 0, 1). 

8. Show that every n - 1 plane in Vn is the solution set of 

an equation of the form alxl + ... anXn = b, where (all....an) # 2 ;+ 

6 


and conversely. 


7 .  Let M1 a ~ dM2 be 2-planes in V4; assume they are not 

parallel. What can you say about the intersection of MI and M2 ? 

Give examples to illustrate the possibilities. 



-- 

I 

The inverse of a matrix 

We now consider the pro5lern of the existence of multiplicatiave 
 

inverses for matrices. A t  this point, we must take the non-commutativity 

of matrix.multiplication into account.Fc;ritis perfectly possible, given 

a matrix A, that there exists a matrix B such that A-B equals an 

identity matrix, without it following that B - A  equals an identity matrix. 

Consider the following example: 

r Example 6. Let A and B be the matrices 

0 0 
 

= 1-1] 
-Then A-B = I2 , but B-A # I3 , as you can check. 

Definition. Let A be a k by n matrix. A matrix B of size n 

by k is called an inverse for A if both of the following equations hold: 

A-B = Ik and B-A = In . 
W e  shall prove that if k # n, then it is impossible for both these 

equations to hold. Thus only square matrices can have inverses. 

We also show that if the matrices aro,square and one of these equations 

holds, then the other equation holds as v e l l !  

Theorem 13. Let A be a matrix of size k by n. Then A has 

an inverse if and only if k = n = rank A. If A has an inverse, that 

inverse is unique. 



,Proof. Step 1. If B is an n by k matrix, we say B is a 

right inverse for A if A-B = Ik . We say B is a leEt inverse for A if 

B-A = In . 
QA&a.k  
be the rank that if A has a right inverse, 

then r = k; ar.d if A has a left inverse, then r = n. 
I 

of the theorem follows. 

Fjrst, suppose B is a right inverse for A . Then A - B  = I Itk * 

follows that the system of equations A.X = C has a solution for arbitrary 

C, for the vector X = B.C is one such solution, as you can check. 

Theorem 6 then implies that r must equal k. 

Second, suppose B is a left inverse for A. Then B-A = In . It 
follows that the system of equations A-X = -0 has only the trivial solution, 

for the equation A-X = g implies that B-(A*X) = 2 , whence X = d .  
Nc;w the dimension of the solution space of the system A.X = Q is n - r ; 

it follows that n - r = 0. 
* 

Step 2. Now let A be an n by n matrix of rank n. We show there 

is a matrix B such that A.B = In . 
ii 

Because the rows of A are independent, the system of equations 
 

A.X = C has a solution for arbitrary C. In particular, it has a solution 

when C is one of the unit coordinate vectors Ei in Vn. Let us choose 

Bi SG that 

for i = l...,n. Then if B is the n by n matrix whose successive 

columns are B1,... ,Bn ' the product A.B equals the matrix whose successive 

columns are El,...,En i  that is, A.B = I, . 
1 Step 3. We show that if A and B are n by n matrices and . 

A-B= I, , then BmA = In. The " i E n  part of the theorem follows. 



Let us note that if we apply Step 1 to the case of a square matrix 
 
\ 

of size n by n , it says that if such a matrix has either a right 
inverse or a left inverse, then its rank must be n. 
 

Now the equation A.B = In says that A has a right inverse and that 

B has a left inverse. Hence both A and B must have rank n. Applying 

Step 2 to the matrix B, we see that there is a matrix C such that 

B.C = I n . Now we compute 

The equation B*C = In now becomes B - A  = In , as desired. 

Step 4. The computation we just made shows that if a matrix has 

an inverse, that inverse is unique. Indeed, we just showed that if 

B has an left inverse A and a ri~ht inverse C, then A = C. 

k:tus state the result proved in Step 3 as a separate theorem: 

Theorem 14. If A and B are n by n matrices such that 

A-B = I n ' then B . A =  I n .  El 
': 

W e  now have a theore t i ca l  criterion for the  ex i s tence  

of A . But how can one f ind  A-Ii n  practice? For 
I. 

instance,  how does one' compute B = d l  'if A is a given 

nonsingular 3 by 3 matrix? By Theorem 14, it will suffice 

to find a matrix 
 



such t ha t  A . B = 13. But t h i s  problem is j u s t  the sroblem of 

solving three systems of l i n e a r  equations 

Thus the Gauss-Jordan algorithm applies. An efficient way 

to apply this aqlgorithmto the computation af A-I is out­

lined on p.  612 of Apostol, which you should read now. 

There is a l s o  a f o n u l a  fo r  A-' that involves 

determinants. It is given in the next s e c t i o n .  

R~.mark. It remains to consider the question whether the existence 

of the inverse of a matrix has any practical significance, or whether it is 

of theoretical interest only. In fact, the problem of finding the inverse 

of a matrix in an efficient and accurate lay is of great importance in 

engineering. One way to explain this is t o  note that often in a real-life 

situation, one has a fixed matrix A, and one wishes to solve the system 

A.X = C repeatedly, for many different values of C. Rather than solving 

each one of these systems separately, it is much more efficient to find 

the inverse of A, for then the solution X = A".C can be computed by 

sirple matrix multiplication. 



Exercises 
 

1. Give conditions on a,b,c,d,e,E such that the matrix 
 

is a right inverse to the matrix A of Example 6. Find two right inverses for A. 

2. Let A be a k by n matrix with k <  n. Show that A has 

no left inverse. *.ow that if A has a right inverse, then that right inverse 

is not unique. 

3. Let B be an n by k matrix with k 4 n. Show that B has 
 

no right inverse. Show that if B has a left inverse, then that left 
 

inverse is not unique. 
 



-Determinants 

The determinant is a function that assigns, to each square matrix 
 
.­

A, a real number. It has certain properties that are expressed in the 
 

following theorem: 
 

Theorem 15. There exists a function that assigns, to each n by 

n rtlatrix A ,  a real number that we denote by det A. It has the following 

properties: 

(1) If B is the matrix obtained from A by exchanging rows 

i and j of A, then det B = - det A. 

( 2 )  If B is the matrix obtained form A by replacing row i of A 

hy itself plus a scalar multiple of row j (where i # j), then det B = det A . 
(3) If B is the matrix obtained from A by multiplying row i 

i 	 of A by the scalar c, then det B = c-det A . 
4 If In is the identity matrix, then det In = 1 . 

We are going to assume this theorem for the time being, and explore 
 

some of its consequences. We will show, among other things, that these 
 

four properties characterize the determinant function completely. kter 
 

we shall construct a function satisfying these properties. 
 

First we shall explore some consequences of the first three of these 

properties. We shall call properties (1)-(3) listed in Theorem 15 the 

elementary row properties of the detsrminant function. 

Theorem 16. t f 5e a function that assigns, to each n by n 

matri;: A, a real number. Scppose f satisfies the elementary row 

properties of the determinant function. Then for every n by n matrix A, 

( *) 	 f(A) = f(In).det A . 



-- 

This theorem says that any function f that satisfies properties 

(I), ( 2 ) ,  and (3) of Theorem 15 is a scalar multiple of the determinant 

function. It also says that if f satisfies property (4)as well, then 

E must equal the determinant function. Said differently, there is at 

most one function that satisfies all four conditions. 

-Proof. St= 1. First we show that if the rows of A are dependent, -
then f ( A )  = 0 and det A = 0 .  Equation ( * )  then holds trivially in this case. 

Let us apply elementary row operations to A to brin~ it to echelon 

form B. We need only the first two elementary row operations to do this, 

and they change the ~ l u e s  of f and of the determinant function by at 

most a sign. Therefore it suffices to prove that f ( B )  = 0 and det B = 0. 

The last row of B is the zero row, since A has rank less than n. If 

we multiply this row by the scalar c, we leave the matrix unchanged, and 

hence we leave the values of f and det urlchanged. On the other hand, 

this operation multiplies these values by c. Since c is arbitrary, we 

conclude that f ( B )  = 0 acd d ~ tB = 0. 

Step 2. Now let us consider the case where the rows of A are 

independent. Again, we apply elementary row operations to A. Hcwever, 

we will do it very carefully, so that the values of f and det do not 

change. 

A s  usual,  we begin with t he  first column. I f  a l l  

e n t r i e s  are zero, nothing remains t o  be done with t h i s  column. 

We move on to consider columns 2,...,n and begin the process again. 

Otherwise, w e  f i n d  a non-zero en t ry  i n  the  f i r s t  column. 

I f  necessary, we exchange rows t o  bring t h i s  entry up t o  the 

upper left-hand corner: this changes the sign of both the func­

t i ons  f and d e t ,  so  we then mult iply this r o w  by -1 to 



change the s igns  back. Then we add mul t ip les  of the  f i r s t  row 

t o  each of the  remaining rows so  as t o  make a l l  t he  remaining 

e n t r i e s  i n  the  f i r s t  column i n t o  zeros. By the  preceding theorem 

and i ts  co ro l l a ry ,  this does not  change the  values of e i t h e r  f 

o r  det. 

Then w e  repeat the process, working w i t h  t h e  second 

column and with  rows 2 . n .  The operat ions  we a p p l y  w i l l  

n o t  a f f e c t  t he  zeros  w e  already have i n  column 1. 

Ssnce the rows of the original matrix were independent, then we do 

not have a zero row at the bottom when we finish, and the "stairsteps" 

of the echelon form go wer just one step at a time. 

In this case, w e  have brought t he  matrix t o  a form where a l l  of 

the e n t r i e s  below the main diagonal a r e  zero. (This is what is 

c a l l e d  upper t r i angu la r  -form.) Furthermore, all the diagonal 

e n t r i e s  are non-zero. Since the values of f and d e t  remain 

the same i f  we replace  A by this new matrix B ,  it now suf­

fices t o  prove our formula f o r  a matrix of the form 

where t he  diagonal e n t r i e s  a r e  non-zero. 



St.ep 3. We show that our formula holds for the matrix B. To do 

this we continue the Gauss-Jordan elimination process. By adding a multiple 

of the last row to the rows above it, then adding multiples of the next- 

to-last row to the rows lying above it, and so on, we can bring the matrix to 

the form where all the non-diagonal entries vanish. This form is called 

diaqonal form. The values of both f and det remain the same if we replace 

B by t h i s  new matrix C. So now it suffices to prove our 

formula for a matrix of the form 

0 0 . 00 

0 ..' bnn 
. . 

(Note that the diagonal entries of B remain unchaaged when 

we apply the Gauss-Jordan process to eliminate a11 t h e  

non-zero entries above the diagonal. Thus the diagonal 

entries of C are the same a s  those o f  B.) 

WE?multiply. the first row of C by 
l/bl 

This action mlt iplies the 

values of both f and det by a Eactor of l/bll. Then we multiply the , 

second row by l/b22, the third by l/b33, and so on. By this process, 

we transform the matrix C into the identity matrix In. We conclude that 

and 

det In (l/bll)...( l/bNI) det C. 

Since det In = 1 by hypothesis, it follows from the second equation that 

det C = bll b22 ... bnn ' 



Then it follows from the first equation that 

E(C) = f(In)- det C, 

as desired. a 

Besides proving the determinant function unique, this theorem also 

tells us one way to compute determinants. O r d  applies this version 

of the Gauss-Jordan algorithm to reduce the matrix to 

echelon form. If the matrix that results has a zero row, then the 

determinant is zero. Otherwise, the matrix that results is in upper triangular 

form with non-zero diagonal entries, and the determinant is the product 
of the diagonal entries. , :- -lz . , .: 

.- ..... <, '.,;; :,-::= ,- .  .). . - : * . . .  .. . <,,, , .. ..... !, c::.= - '-'2. 2 cr:. , ,l 

The proof of this theorem tells us something else: If the rows of 

A are not independent, then det A = 0, while if they are independent, 

then det A # 0. We state this result as a theorem: 

Theorem 16. Let A be an n by n matrix. Then A ha.s rank n 

if and only i f  det A # 0 . 
An n by n matrix A fur which det A # 0 is said to be non-sinqular . 

This theorem tells us that A has rank n if and only if A is non-singular. 

Now we prove a totally unexpected result: 

Theorem 17. L e t  A m d  B k n by n matrices. Then 

det (A-B) = (det A). (det B) . 

Proof. This theorem is almost impossible to prove by direct computation. 

Try the case n = 2 if you doubt me ! Instead, we proceed in another direction: 

Let B be a fixed n by n matrix. Let us define a function f of 

n by n matrices by the formula 

f(A) = det(A9~). 



We shall prove that f satisfies the elementary row properties of the 
 

determinant function. From this it follows that 
 

f(A) = f(In)- det A , 

which means that 

det(A*B)= det(In.B)* det A 

= det B . det A , 
and the theorem is proved. 

First, let us note that if A1, ...,A are the rows of A, considered n 
 

as row matrices, then the rows of A-B are (by the definition of matrix 
 

multiplication) the row matrices A .B,...,A;B . Now exchanging rows1 
 

i and j of A, namely Aj arid A 
j' has the effect of exchanging rows 

i and j of A.B. Thus this operation changes the value of f by a 

factor of -1. Similarly, replacing the ithrow Ai of A by Ai + FAI 
has the effect on A-B of replacing its ith row Ai.B by 
 

( A ~t CA.).B = A~.Bt c A , - B
3 3 

= (row i of A . B )  + c(row j of A-B) .  

Hence it leaves the value of f unchanged. Finally, replacing the ith row 

Ai of A by cAi h s  the effect on A.B of replacing the ith row Ai.B 

by 
 

(cAi)-B = c (Ai-B) = c (row i of A-B). 

Hence it multiplies the value of f by c. 
 

The determinant function has many further properties, which we shall 
 

not explore here. (One reference book on determinants runs to four volumes!) 
 

We shall derive just one additional result, concerning the inverse matrix. 
 



-Exercises -
1. Suppose that f satisfies Lhe elementary row properties of 

the determinant function. suppose also tha t  x, y, z are numberssuch tha t  

mrnpute the value o f  f for each of  the following matrices: 

2. L e t  f be the Function of Esercise 1. Calculate f(In). Express 
 

E i n  terms of the determinant function. 
 

7 .  	  Compute the determinant of the following matrix, using Gauss- 
4 
 

Jordan elimination. 

4 .  	  Determine whether the following sets o f  vectors are l inearly  

independent, using determinants ., 

(a) 	Al = ( l , - l , O ) r  % = ( O f l f - l l r  A3. = ( 2 t 3 f - 1 ) 9  

(b)  	  q = ( 1 , - 1 . 2 , 1 ) ,  A.2 = ( - l t2 , -1 ,O)  f A 3  = ( 3 t - l t l t Q )  t 
 

A4 =. (1 ,0 ,0 ,1 )  
  

(c) 	P, = 	 42 = ( I ~ ~ ~ o ~ o ~ o )  
= ( I ~ O ~ ' ~ ~ O , ~ ) ,( ~ . O , O ~ , O , ~ ) , A3 


A4 = ( l . l f O , l t l ) )  A5 = (1,010,010) . 
 
(dl q = (1,-11, A2 = ( O t l ) ,  A3 = ( l f l ) .  
  



4 

1 
 
-A formula for A­

i ' j  

We know that an n by n matrix A has an inverse if and only if 

it has rank n, and we bow that A has rank n if and only if 

det A # 0. Now we derive a formula for the inverse that involves determinants 

directly. 

We begin with a lema about the evaluation of determinants. 

Lemma -- 18. Given the row matrix [ a  ... an] , let us define a 
function f of (n-1) by (n-1) mtrtrices B by- the formula 

f(B) = det 

,I 
where B1 consists of the first j-1 columns of B, arid B 

2 
cc~nsists 

of the remainder of B. Then 

Proof. You can readily check that f satisfies properties (1)-( 3) 

of the determinant function. Hence- f(B)= f(I ) -det B. n- 1 W compute 

f(In) = det 

n-j 

where the large zeros stand for zero matrices of the appropriate size. 

A sequence of .j-1 interchanges of adjacent rows gives us the equation 



One can apply elementary operations to this matrix, without changing the 
 

value of the determinant, to replace all of the entries al,...,aj-l,aj+l,...,a
n 
 

by zeros. Then the resulting matrix is in diagonal form. We conclude that 
 

Corollary Consider an n by n mtrix of the form 
 

where Bl,...,B4 are matrices of appropriate size. Then 

det A = (-1) 

Proof. A sequence of i-1 interchanges of adjacent rows wilt king 

the matrix A to the form given in the preceding lma. a 

Definition. In general, if A is an n by n matrix, then the 
 

matrix of size (n-1) by (n-1) obtained by deleting the ith row and 
 

the j th column of A is called the (i,j)-minor of A, and is denoted Ai j.  

me preceding corollary can then be restated as follows: [ I 



Corollary 20. If all the entries in the jth column of A are zero except 

for the entry ai j  in row i, then det A = (-1) i+j aij-detAij .  

n w r  1~ t ~ e  (- ) i+j that appears in this corollary is also 
det Aij 

given a special name. It is called the (i,j)-cofactor of A. Note that 

the signs (-l)itj follows the pattern 
 

Nc;wwe derive our formula for A - ~ .  

Tl~eorern21. k t  A be an n by n matrix with det A # 0. 

1 If A * B = In' then 

bi j 
= (-l)jci det A .  

3 1
./det A .  

(That is, the entry of B in row i and column j equals the ( j,i)­

cofactor of A,  divided by det A.  This theorem says that you can compute 

B by computing det A and the determinants of n2 different (n-1) by 

(n-1) matrices. This is certainly not a practical procedure except in 

low dimensions !) 

Proof. k t  X denote the jth col- of B. Then xi ­
- 'ij. 

Because A-B = In' the column matrix X satisfies the equation 

e ere E 
j 

is the .column matrix consisting of zeros except for an entry 

of 1 in row j.) Furthermore, if Ri denote the ith mlumn of A, then , 

I 



because A - In = A , 	we1 have the equation 

~ - ( i ~ ~  In) A.Ei = A , .column of = 
1 
 

Now we introduce a couple of weird matrices for reasons that will become 
 

clear. Using the two preceding equations, we put them together to get 
 

the following matrix equation: 
 

It turns out that when we take determinants of both sides of this equation, 
 

we get exactly the equation of our theorem! First, we show that 
 

det [El ... Ei-l X Ei+l ... En] = xi . 
Written out in full, this equation states that 


det 
 

If x. = 0, this equation holds because the matrix has a zero row. If 
1 

xi # 0, we can by elementary operations replace all the ectries above 

and beneath xi in 	its column by zeros. The resulting matrix will k 
 

in diagonal form, and its determinant will be xi. 
 

TFus the determinant of the left side of sqxation ( * )  equals (det A) .xi, 

which equals (det A)*bij. We now compute the determinant of the right 

side of equation ( * ) .  Corollary 20 

applies, because the 	ith column of this matrix consistsof zeros except for 
 

an entry of 1 in row j . Thus the right side of ( * )  equals (-l)jti times 

the determinant of the matrix obtained by deleting raw j and column i. 
 

This is exactly the same matrix as we would obtain by deleting rcw j and 
 

column i of A. Hence the right side of ( * )  equals (-l)jti det R . . ,
J 1 



and our theorem is proved. a 
 

-Rc;mark 1. If A is a matrix with general entry ai  in 

row i and colrmn j , then the transpose of A (denoted is the matrix 

whose entry In row i and column j is a , ,  . 
J 1 

Thus i f  A has size K by n, then A'= has sire n by k; it 

can be pictured as the mtrix obtained by flipping A around the line 

y = -x. For example, 

Of murse,i£ A is square, then the transpose of A has the same dimensions 

as A. 

Using this terminology, the theorem just proved says that the inverse of 

A can be computed by the following four-step process: 

(1) 	 Fcrm the matrix whose entry in row i and column j is the 
 

(This is called the matrix zf minor determinants.) 
 
nr*r det *ij. 
 

( 2 )  	  Prefix the sign (-1) to the entry in row i and column j, for 

each entry of the matrix. (Thisis called the matrix -of cofactors.) 

(5) 	Transpose the resulting matrix. 
 

( 4 )  	Divide each entry of the matrix by det A. 

In short, this theorem says that 
 

A-1 = -(cof A ) ~ ~ . 

det A 
 

This formula for A ' ~  is used for rornputational purposes only for 2 by 2 
 

or 3 by 3 matrices; the work simply gets too great otherwise. But it is 
 

important for theoretical purposes. For instance, if the entries of A 
 



are contin~ous functions of a parameter t, this theorem tells us that 

the e ~ t r i e sof A-' are also continuous functions of t, provided det A 

is never zero. 

R ~ m r k2. This formula does have one practical consequence of great 

importance. It tells us that i f  deb A is small as cunpared with the entries 

of A, then a small change in the.entries of A is likely to result in a 

large change in the ccmputed entries of A-I.This means, in an engineering problem , 

that a small error in calculating A (even round-off error) may result in a 

gross error in the calculated value of A-l.A matrix for which d e t  A is 

relatively small is saidtobeill-conditioned. If such a'mtrix arises in practice, 

one usually tries to refomlate the problem to avoid dealing with such a matrix. 
 

( 



a L 3  

Exercises 
 

\ 
I 	 use the formula f o r  A to find the inverses of the follow­

ing matrices , assuming the usual definition of the deter-,inant in LOW 
dirnens ions. 

(b) c0 : d ace f O .c n , a s s m F n g  

2.  	L e t  A ba a square matrix all of whose entries are integers. 

show that i f  dat A = 21,  then all the entries of A-' are 

integers. 

3 .  Consider the matrices A,B ,C,D,E  of p. A.23.  Which of these 

matrices have inverses? 


4. Consider the following matrix function! 


For what values of t does A-' exist? Give a formula for A-Iin term 

5 .  Show that the conclusion of Theorem20 holds if A has an entry 

in row i and calm j, =d all the other entries in row i equal 0. 
Or ail 



'b. Theorem L e t  A, B I  C be matricas of .size lc by k, and 

m by I(, and m b l  mr respectively. ThenrB z]d = (det A )  (det (2). 

\ 

(Here 0 is the zero matrix of appropriate size.) 

Prwf. k t  B and C ke fixed. Fcr each k by k matrix 

A, define 

(a )  Show f satisfies the elementary row properties of the determinant 

function. 

(b) U s e  Exercise 5 to show that f( I ~ )= det C. 

( c )  Cctrrplete the proof. 



Ccnstruction of the determinant when n 5 3.\ 

, T'i~e actual definition of the determinant function is t're least interesting 

part of this entire discussion. The situation is similar to the situation 

with respect to the functions sin x, cos x, and ex. You trill recall that 
0 

their actual definitions (as limits of Pbrseries) were not nearly as interesting 
as the properties we derived from simple basic assumptions about them. 

We first consider the case where n< 3, which isdoubtless familiar 

to you. This case is in fact all we shall need for our applications to calculus. 

We begin with a lema: 

Lemma 21. Let f ( A )  be a real-valued function of n by n matrices. 

Suppose that: 

( i )  Exchanging any two rows of A changes the mlue of f by a factor 

of -1. 

( i i )  For each i, £ is linear as a function of t h e  ith row. 

Then f satisfies the elementary row properties of the determinant function. 

Proof. By hypothesis, f satisfies the first elementary row property. 

We check the other tu'0. 

Let A,, ...,A, be the rows of A. To say that E is linear 

as a function of row f alone is to say tha t  (when f is written as a,function 

of the rows of A): 

( * )  f(A ,,..., cx + dY, ... ,An) = cf(A1,...,X,. ..,An) + dE(A1,...,Y,...,A,,). 

where cX + dY and X and Y appear in the ith component. 

The special case d = 0 tells us that multiplying the ith row 

of A by c has the effect of multiplying the mlue of f by c. 



We now consider the third type of elementary operation. 

Suppose that B is the matrix obtained by replacing row i of A 5 y  

itself plus c times row j. We then compute (assuming j > i for 

convenience in notation), 

The second term vanishes, since two rows are the same. (Exchanging them does 


not change the matrix, but by Step 1 it changes the value of f by a factor 


of -1.)(J 

Definition. We define 
 

det [a] = a. 
 

1 Ldet I 1bl b2 = a l b ~- a2bl.  

q,eorem22. The preceding definitions satisfy the four conditions 

of the determinant f unction. 

-Proof. The fact that the determinant of the identity matrix is 1 

follows by direct computation. . It then suffices to check that (i) and (ii) 

of the preceding theorem hold . 
Irl the 2 by 2 case, exchanging rows leads to the determinant bla2- b2al , 

which is the negative of what is given. 



In the 3 by 3 case, the fact that exchanging the last two rows changes the 

sign of the determinant follows from the.2 by 2 case. The fact t h a t  exchanging 

the first two rows also changes the sign follows similarly if we rewrite the 

formula defining. the determinant in the form 

Finally, exchanging rows 1 and 3 can be accomplished by three exchanges of 

adjacent rows [ namely, (A,B,C) --> (A,C,B)-9 (C,A,B) -3 (C,B,A) 1, so it changes 

the sign of the determinant. 

To check (ii) is easy. Consider the 3 by 3 case, for example. We 

how that any function o f  the form 

E(X) = [ a b c ] - X  = axl +bw + a
2 3 

is linear, where X is a vector in V The function 
 3 

f ( X )  = d e t  

has this form, where the coefficients a, b, and c involve the constants 

bi and c Hence f is linear as a function of the first row. 
j *  
  

The "row-exchange propertyw then implies that E is linear as a function 
 

of each of the other rows. 0 



Exercise 
 

*l. Let us define 
 

det 
 

(a) Show that det Iq = 1. 

(b) Show that excha7'ng any two of the last three rows changes the sign of the
 
determinant. 
 

(c) Shwthat exchanging the first two rows changes the sign. [Hint: Write the 

expression as a sum of terms involving det pi 'j7. I 
Pi bjJ 
 

(d) Show that exchanging any two rows changes the sign. 
 

(e) Show that det is linear as a function of the first row. 

(f) Conclude that det is linear as a function of the ith row. 
 

(g) Conclude that this formula satisfies all the properties of the determinant 
 

function. 
 



Construction of fhe Determinant unction^^ Suppose we take the posi- 
tive integers 1, 2, . . . , k and write them down in some arbitrary order, 
say jl, j z ,  . . . , j h .  This new ordering is called a permutation of these 
integers. For each integer ji in this ordering, let us count how many 
integers follow it in this ordering, but precede it in the natural ordering 
1, 2, . . . , k. This number is called the number of inaersions caused by  the 
integer j;. If we determine this ilumber for each integer ji in the ordering 
and add the results together, the number we get is called the total number 
of inversions which occur in this ordering. If the number is odd, we say 
the permutation is an odd permutation; if the number is even, we say it is 
an even permutalion. 

For example, consider the following reordering of the integers between 
1 and 6: 

2, 5 ,  1, 3, 6, 4. 

If me count up the inversions, we see that the integer 2 causes one inver- 
sion, 5 causes three inversions, 1 and 3 cause no inversions, 6 causes one 
inversion, and 4 causes none. The sum is five, so the permutation is odd. 

Xf a permutation is odd, me say the sign of that permutation is -; if 
it is even, we say its sign is +. A useful fact about the sign of a permuta­
tion is the following: 

Theorem 22.If we interchange two adjacent elements of a per­
mutation, we %hange the sign of the permutation. 

ProoJ. Let us suppose the elements ji and ji+1 of the permutation 
jl, . . .' , ji, ji+l, . . . , j k  are the two we interchange, obtaining the permu- 
tation 

j ~ ,. . . ) j+l,j ~ ,. . . , jk. 
The number of inversions caused by the integen j l ,  . . . , ji-1 clearly is 
the same in the new permutation as in the old one, and so is the number 
of inversions caused by ji+t, . . . , js. I t  remains to compate the number of 
inversions caused by ji+land by ji in the two permutations. 

Case I: j r  precedes j,-+lin the natural ordering 1, . . . , k. I n  this case, 
the number of inversions caused by j i is the same in both permutations, 
but the number of inversions caused by ji+lia one larger in the second 
permutation than in the first, for ji followsj4+*in the second permutation, 
but  not in the first. Hence the total number of inversions is increased by 
one. 

Case 11: ji  follows j s+ l  in the natural ordering 1, . . . , k. I n  this case, 
the number of inversion caused by jiclis the same in both permutations, 
but  the number of inversions caused by ji is one less in the second permu- 
tation than in the first. 

I n  either case the total number of inversions changes by one, 80 tha t  the 
sign of the permutation changes. U 



EXAMPLE.If we interchange the second and third elements of the 
permutation considered in the previous example, we obtain 2, 1,5, 3, 6, 4, 
in which the total number of inversions is four, so the permutation is even. 

Definition. Consider a k by k matrix 

Pick out one entry from each row of A ;  do this in such a way that these 
entries all lie in different columns of A .  Take the product of these entries, 

and prefix a + sign according as the permutation jl, . . . , jk is even or 
odd. (Note that we arrange the entries in the order of the rows they come 
from, and then"we compute the sign of the resulting permutation of the 
column indices.) 

If we write down all possible such expressions and add them together, 
the number we get is defined to be the determinant of A .  

REMARK.We apply this definition to the general 2 by 2 matrix, and 
obtain the formula 

If we apply i t  to a 3 by 3 matrix, we find that 

The formula for the determinant of a 4 by 4 matrix involves 24 terms, 
and for a 5 by 5 matrix it involves 120 terms; we will not write down these 
formulas. The reader will readily believe that the definition we have 
given is not very useful for computational purposes! 

The definition is, however, very convenient for theoretical purposes. 



-- 

Theorem 24. The determinant of the identity matrix is 1. 
 
. ,,:!, -" 

Proof. Every term in the expansion of det In has a factor . 

of zero in it except for the term alla22...alck, and this term equals 1. 

/ 

Theorem $5. If A '  is obtained from A by interchanging rows 

i and i+l, then det A '  = - det A. 

Proof. Note that each term 
 

in the expansion of det A' also appears in the expansion of det A, because 
we make all possible choices of one eritry from each row and column when 
we write down this expansion. The only thing we have to do is to compare 
what signs this term has when i t  appears in the two expansions. 

Let a~r,- - . ni j ra i f l , j ,+ ,. . . nkjk be a term in the expansion of det A .  
If we look a t  the correspondi~ig term in the expansion of det  A', we see 
that we have the same factors, but they are arranged diflerenlly. For to 
compute the sign of this term, we agreed to arrange the entries in the 
order of the row8 they came from, and then to take the sign of the cor- 
respondiilg permutation of the column indices. Thus in the expansion of 
det A', this term mill appear as  

l'lie permutation of the columr~ indices here is the same as above except 
that  eleme~lts ji and j i+ l  have been interchanged. By Theorem 8.4, this 
means that this term appears in the expansion of det A' with the sign 
opposite to its sign ill the expansion of det A .  

Since this result holds for each term in the expansion of det A', we have 
det A' = - det A.  - . 0 

Theorem 26'. The function det is linear as a function of the ith 	row. 
 

th

Proof. Suppose we take the constant matrix A, and replace its i 
 

row by the row vector [xl ... A\] . When we take the determinant of this 
new matrix, each term in the expression equals a constant times x

j 
, for 

some j. (This happens because in forming this term, we picked out exactly one 
 

entry from each row of A . )  Thus this function is a linear combination 

of th2 components xi; that is, it has the form 

LC, .... cl. x , for some constants c a
k 	 i ' 



Exercises 
 

1, Use Theorem2s.' to show that exchanging two rows of A 
 

changes the sign of the determinant. 
 

2. Consider the term in the definition of
all; a2j2"' %jk 

the determinant. (The integers j l ,  j2, . . . , jk are distinct.) Suppose 

we arrange the factors in this term in the order of their column indices, 

obtaining an expression of the form 

Show that the sign of the perm-tion il,i2,...,ik equals the sign of the 

permutation jl,j2,...,jk 

Ccnclude that det = det A in general. 

3.' k t  A be an n by n matrix, with general entry aij in 

row i and column j. Let m be a fixed index. Show that 

Here A denotes , as usual, the (m,j)-minor of A. This formula is 
mj 
 

called theMformula for expanding det A according to the cofactors o f  

the nth row. [Hint: Write the mth row as the sum of n vectors, each 

of which has a single non-zero component. Then use the fact that the 

determinant function is linear as a function of the mth row. 1 



-Tl~ecross-product 2 V3 

If A = (alI a2' a 3 )  and B = (blI bZI b ) are vectors in 3 v3' 

we define their cross product be the vector 
 

al a2A X B  = (detr2a.] , - det 2) det[bl bd) 
2 3 

We shall describe the geometric significance of this product shortly. 
 

But first, we prove some properties of the cross product: 
 

Theorem 27. Fc'r all vectors A, B in V3, we have 
 

( a )  B%A = - A x B .  

(11) Ar(B + C) = AXB + A X C  , 
 
( E i + C ) X A  = BkA + C % A .  
  

( c )  (CA)X B = C ( A X B )  = AX(CB) . 
(d) A X B  is orthogonal to both A and B. 
 

Proof. (a) follows becauseexhanging two rows of a determinant 

ck-anges the sign; ar:d (b) and (c) follows because the determinant is linear 

as a function of each row separately. To prove ( d ) ,  Lie note that if 

C = (cII c2, c3) , then 
fcl '31 

by definition of the determinant. It;follows that A-(AxB) = B - ( A X B )  = 0 

because the determinant vanishes if two rows are equal. The only proof 

that requires some work is (e). For this, we recall that 

(a + bl2 = a2 + b2 + 2ab, and (a + b + c12 = a2 + b2 + c2 c 2ab + 2ac + 2bc . 
Equatiori (e )  can be written in the form 



We first take the squared terms on the left side and show they equal 
 

the right side. Then we take the "mixed" terms on the left side and show 
 

they equal zero. The squared terms on the left side are 
 

which equals the right side, 
 

2(a,b.) .x3i,j = 1 1 3  

The mixed terms on the left side are 
 

In the process of proving the previous theorem, we proved also 
 

the following: 

Theorem 2.8:. Given A, B, C , we have A- (BxC) = (AxB).C. 

--Proof. This fbllows from the fact that 

&finition. The ordered 3-tuple of independent vectors (A,B,C) 

of vectors of V3 is called a positive triple if 

A-(B% C) > 0. Otherwise, it is called a neqative triple. A positive 

triple is sometimes said to be a riqht-handed triple, and a negative one 

is said to be left-handed. 



The reason for this.terminology is the following: (1) the triple 

(i,i,&) is a positive triple, since i - ( d x k ) = det I3 = 1 , and 

(2) if we draw the vectors i,i, and & in V3 in the usual way, 

and if one curls the fingers of one's right hand in the direction from the 

first to the second, then one's thumb points in the direction of the 

third. 

n 
 

1 >&" j-
Furthermore, if one now moves the vectors around in V perhaps changing their 
 3' 

lengths and the angles between them, but never lettinq them become dependent, 
 

=d if one moves one's right hand around correspondingly, then the 
 

fingers still correspond. to the new triple (A,B,C) in the same way, and 
 

this new triple is still a positive triple, since the determinant cannot 
 

have changed sign while the vectors moved around.(Since they did not become 
 

dependent, the determinant did not vanish.) 
 

Theorem .29. Let A and B be vectors in V If A: and: B3' 

are dependent, then AXB = -0. Otherwise, AXB is the unique vector 

orthogonal to both A and B having length llA ll IlBll sin €3 (where 8 

is the angle between A and B), such that the triple (A,B,A%B) 

forms a positive (i.e.,right-handed) triple. 



ProoF. We know that A X B  is orthogonal to both A and B. \v'e 

also have 

I I~xaU2 = ­~ I A C - I I B ~ ?(A.B) 2 

= ros 
2 
€I 1  1  ~ ( B A ~ ,\ ( A [ \ ~ .~ ~ (11- 1 ~ 1 = 1 ~ ~ s i n 2 e  . 

Finally, i f  C = A X B ,  then ( A , B , C )  is a positive t r iple,  since 



Polar coordinates 

Let A = (a,b) be a point of V2 different from Q. We wish to define what we mean 

by a "polar angle" for A. The idea is that it should be the angle between the vector A 

and the unit vector i = (1,O). But we also wish to choose it so its value reflects whether 

A lies in the upper or lower hdf-plane. So we make the following definition: 

Definition. Given A = (a,b) # Q. We define the number 

(*I 8 = * arcos (Aei/llAII) 

to  be a polar annle for A, where the sign in this equation is specified to be + if b > 0, 

and to be -if b < 0.Any number of the form 2mn + 0 is also defined to be a polar angle 

for A. 

If b = 0, the sign in this equation is not determined, but that does not matter. For 

if A = (a,O) where a > 0, then arccos (A-i/llAII) = arccos 1 = 0, SO the sign does not 

matter. And if A = (-a,O) where a > 0, then arccos (A.L/IIAII) = arccos (-1) = T. Since 

the two numbers + T and - T differ by a multiple of 27, the sign does not matter, for 

since one is a polar angle for A, so is the other. 

Note: The polar angle B for A is uniauely determined if we require -n < f? < T. 
But that is a rather artificial restriction. 

2 2 ' I 2Theorem. A = (a,b) # Q a ~ o i n t  of V2. Lgt r = (a +b ) = IIAll; l a  8 

-a polar annle for A. Then 

A = (r cos 8, r sin 8). 



Proof. If A = (a,O) with a > 0, then r = a and 0 = 0 + 2ms; hence 

r cos 8 = a and r sin 0 = 0. 

If A = (-a,O) with a > 0, then r = a and 0 = a +2m7r, so that 

r cos 0 =  -a and r sin B =  0. 

Finally, suppose A = (a,b) with b f 0. Then A.C/I(AII = a/r, so that 

0 = 2ma e arccos(a/r). 

Then 

a/r = cos(*(&2rn~))= cos 0, or a = r cos 0. 

Furthermore, 
2 2 2 2b2 = r2 -a2 = r (l-cos 8) = r sin 8, 

so 

b = *r sin 8. 

We show that in fact b = r sin 8. For if b > 0,then 0 = 2ma + arccos(a/r), so that 

and sin 19 is positive. Because b, r, and sin 0 are all positive, we must have b = r sin B 

rather than b = -r sin 8. 

On the other hand, if b < 0, then 0= 2m7r - arccos(a/r), so that 

2mn-a< B < 2 m a  

and sin 0 is negative. Since r is positive, and b and sin 8 are negative, we must have 

b = r sin 0 rather than b = -r sin 8. o 

(~ lane tarvMotion ( 

In the text, Apostol shows how Kepler's three (empirical) laws of planetary motion 

can be deduced from the following two laws: 

(1) Newton's second law of motion: F = ma. 

(2) Newton's law of universal gravitation: 



Here m, M are the masses of the two objects, r is the distance between them, and G is a 

universal constant. 

Here we show (essentially) the reverse-how Newton's laws can be deduced from 

Kepler's. " . , . k m L M  
More precisely, suppose a planet xy plane with the 

origin. Newton's laws tell us that the acceleration of P is given by the equation 

That is, Newton's laws tell us that there is a number A such that 
X
! != -7" r ,  
r 

and that X is the same for all pIanets in the solar system. (One needs to consider other 

systems to see that A involves the mass of the sun.) 

This is what we shall prove. We use the formula for acceleration in polar 

coordinates (Apostol, p. 542): 

We also use some facts about area that we shall not actually prove until Units VI and 

VII of this course. 

Theorem. S u ~ ~ o s e  la net P moves in the xy plane with the sun at the orign. a 

(a) Ke~ler 's  second law im~lies  that the acceleration is radial. 

(b) Ke~ler's first and second laws imply that 

A~ 
-a,=-­

2 4 ,
I 
 



\I 
where Xp ~ a number that mav depend on the particular planet P. 

(c) Keder's three laws i m ~ l v  that X p  is the same for d la nets. 

Proof. 	 (a) We use the following formula for the area swept out by the radial 

vector as the planet moves from polar 

angIe Q1 to polar angle 02: 

Here it is assumed the curve is specified by giving r as a function of 0. 

Now in our present case both 0 and r are functions of time t. Hence the area swept 

out as time goes from to to t is (by the substitution rule) given by 

Differentiating, we have dA = 1
I
2 dB ,which is constant by Kepler's second law. That 

is, 

(*I 
for some K. 
 

Differentiating, we have 
 

The left side of this equation is just the transverse component (the po component) of a! 

Hence a is radial. 

(b) To apply Kepler's first law, we need the equation of an ellipse with focus at 

the origin. 

We put the other focus at  (a,O), and use 
, - ,  

the fact that an ellipse is the locus of all 

points (x,y) the sum of whose distances 

from (0,O) and (a,O) is a constant b > a. 



The algebra is routine: 

or r + Jr2 - 2a(r cos 0) + a'= b, 

r2 -2a(r cos 8) + a2 = (b-r)2 = b2 -2br + r2 , 
2br -2ar cos 0 = b2 -a 

2 , 

C b2 - a2r = 1 - e cos 0 , where c = -26-. and e = a/b. 
+ i 

e 
 
(The numberhis called the eccentricity of the ellipse, by the way.) Now we compute the 

radial component of acceleration, which is 

Differentiating (**), we compute 
-1 
 

(1-e cos 0) 
Simplifying, 

dr = a1(-1)r 2(e sin e)=dB 

Then using (*) from p. B60, we have 
dr = $e1 sin 6')K. 

Differentiating again, we have 

d2r 1 d0,= - -(e cos O)zK, 
dt C 

d2r 1-Z = -&e cos 8) K,  using (*) to get rid of de/dt.
d t  

Similarly, 



2 
- r [q = - r[K7] using (*) again to get rid of dO/dt. 

Hence the radial component of acceleration is (adding these equations) 

K~ K~ K~ e cos e 1- 3 e  cos B)=--=-~[3 C + TIr r 
K' e cos 8 += -5[ 81C cOsCr 

Thus, as desired, 

(c) To apply Keplerys third law, we need a formula for the area of an ellipse, 

which will be proved later, in Unit VII. It is 

Area = T(ma'ora axis) (minor axis) 
2 

The minor axis is easily determined to be 

given by: 

minor axis =4-
 =dm. 
 
It is also easy to see that 

major axis = b. 

Now we can apply Kepler's third law. Since area is being swept out at the constant 

rate ;K, we know that (since the period is the time it takes to sweep out the entire 

area), 
1
Area = (2K)(Period). 

Kepler's third law states that the following number is the same for all planets: 

(major axis)"(major axi s)3 



---4 r 
2
(major axia)l(minor A a w i ~ ) ~ / ~ ~

16 (major axi s)' 

r2lT i ni* 1 
= b major axis ;;Z 

Thus the constant Xp is the same for all planets. 

(1) L e t  L be  a l ine  in  V, with d i rec t ion vector A;  le t  P be  a point  not  on L. Show t h a t  the  

po in t  X on  t h e  l ine  L closest  to P sa t i s f ies  the condi t ion  t h a t  X-P is  pe rpend icu la r  to A.  

(2) F i n d  p a r a m e t r i c  equa t ions  f o r  t h e  cu rve  C consis t ing  of a l l  points  of V%equidis tant  

f r o m  t h e  po in t  	P = (0 , l )  a n d  t h e  l ine  y =-I. If  X is  a n y  po in t  of C, show t h a t  t h e  t a n g e n t  

3 
vec to r  to C' a t  X makes  equa l  angles  wi th  the  vector  X d  P a n d  t h e  vec to r  j. (Th i s  i s  t h e  

ref lec t ion p roper ty  of t h e  pa rabo la . )  

(3) Cons ide r  t h e  c u r v e  f ( t )  =(t,t 	cos ( d t ) )  f o r  0 c t I 1, 

= (0,O) f o r  t = 0. 

T h e n  f is cont inuous .  L e t  P be t h e  p a r t i t i o n  

P = {O,l /n , l / (n-1),...,1/3,1/2,1]. 

D r a w  a p ic tu re  of t h e  inscr ibed polygon x ( P ) in t h e  case  n = 5. Show t h a t  i n  gene ra l ,  x(P) 

h a s  l eng th  

I x(P) I 2 1 + 2(1/2 + 113 + ... + l / h  ). 

Conc lude  t h a t  f is no t  rectif iable.  



($) Let q be a fixed unit vector. A particle moves in Vn in such a way that its position 

vector ~ ( t )  r ( t ) -u  = 5t3 for all t ,  and its velocity vector makes asatisfies the equation 

constant angle 0 with u, where 0 < 9 < 7r/2. 
 

2
(a) Show that ((I[(15t /cos 8.= 

(b) Compute the dot product . a ( t ) -~( t )in terms o f t  and 0. 

(9 A particle moves in i-space so as to trace out a curve of constant curvature K = 3. 

Its speed at time t is e2t. Find Ila(t)ll, and find the angle between q and 3 at  time t .  

(6) 	Consiaer the curve given in polar coordinates by the equaticn 

r = e- for  0 5 Q 52UM , where N is a positive integer. 

Find the length of this curve. h3at happens as M becomes 

a rb i t r a r i l y  large? 

( a )  	 Derive the following formula, vhich can be used t o  compute the 

cctrvature of a curve i n  R": 

(t) 	Find the cunature  of the curve = ( l c t ,  3 t ,  Z t t2, 2 t  2 ) .~ ( t )



Derivatives of vector functions. 
 -

Recall that if x is a point of R" and if f(5)  is-
a scalar function of x, then the derivative of f (if it 
 -
exists) is the vector 
 

For some purposes, it will be convenient to denote the derivative 
 

of f by a -row matrix rather than by a vector. When we do this, 
 

we usually denote the derivative by Df rather than ?f. Thus 
 

If we use this notation,.the definition of the derivative 
 

takes the following form: 
 

where ( ) - 0 as h- -> -0. Here the dot denotes matrix 

multiplication, so we must write h- as a column matrix in 

order for the formula to work; 



- - - -  

- - 

i 
è his is the formula that will generalize to vector functions 
 

Definition. Let S be a sybset of R ~ .  If 
 

f : S -> Rk , then f(5) is called a vector function of a 

vector variable. In scalar form, we can write f(5) out in the 
 -
form 
 

Said differently, -f consists of "k real-valued functions of 

n variables." Suppose now that f is defined in an open ball -
about the point -a. We say that -f is differentiable at -a if 

each of the functions fl(x), ...,fk(~) is differentiable at a-
! (in the sense already defined) . Furthermore, we define the 

derivative of f at a to be the matrix 

Oth 
That is, Df(=) is the matrix whose 1- row is the derivative 
 

Dfi (=) of the i-th coordinate function of -f. 
Said differently, - the' derivative 'Df (5) - of'. . -f at - -a 

is. the k by n matrix whose entry in row i and column j is 



- - - - - 
-- - 

it is  o f t e n  c a l l e d  t h e  Jacobian matr ix  of f ( 5 ) .  Another-
no ta t ion  f o r  t h i s  mat r ix  i s  t h e  no ta t ion  

With t h i s  no ta t ion ,  many of  t h e  formulas w e  proved f o r  a 

s c a l a r  funct ion  f (5) hold without change f o r  a  vec tor  funct ion  

-f ( 5 ) .  W e  cons ider  some of them here:  

Theorem 1. The funct ion  f (5)  i s  d i f f e r e n t i a b l e  a t  a 

i f  and only i f  

where g ( & )  -> 0 a s  h -> 0 .- _I - ­
\ 

(Here -f, 5, and -E a r e  w r i t t e n  a s  column mat r i ces . )  

Proof: Both s i d e s  of  t h i s  equat ion rep resen t  column 

matr ices .  I f  w e  cons ider  t h e  I-
t h  e n t r i e s  of these  matrices, 

we have t h e  following equat ion:  

NOW -f is d i f f e r e n t i a b l e  a t  -a i f  and only i f  each funct ion  

is. And f i  is d i f f e r e n t i a b l e  a t  -a i f  and only i ff i  

Ei (&) -> 0 a s  -h -> -0. But Ei (h)- -> 0 a s  -h -> -0, f o r  

each i, i f  and only if -E (h)- -> -0 a s  -h -> -0. 



- - - -

- -

1 Theorem 2.  - - - is  d i f f e r e n t i a b l e  -a t  a ,  then  fI f  f ( x )  

-i s  continuous -a t  a .  

Proof. I f  f i s  d i f f e r e n t i a b l e  a t  a ,  then s o  i s  each 

funct ion  f i .  Then i n  p a r t i c u l a r ,  f i  i s  continuous a t  a ,-
whence f i s  continuous a t  -a .-

-The genera l  cha in  -r u l e .  

Before cons ider ing  t h e  genera l  chain r u l e ,  l e t  us t ake  t h e  

chain  r u l e  w e  have a l r eady  proved and reformulate  it i n  t e r m s  of  

matr ices .  

A s s u m e  t h a t  f (5) = f ( x l , . .  ., xn ) is a s c a l a r  funct ion  

def ined  i n  an open b a l l  about -a ,  and t h a t  -x ( t)= (xl ( t),..., 
x n ( t ) )  is  a  parametrized curve passing through -a .  L e t  

-x ( t O ) = -a .  I f  f  (x)  - i s  d i f f e r e n t i a b l e  a t  -a ,  and i f  -x ( t )  i s  

) 	 d i f f e r e n t i a b l e  a t  to, and we have shown t h a t  t h e  composite 

f ( ~ ( t ) )is  d i f f e r e n t i a b l e  a t  to, and i t s  d e r i v a t i v e  i s  given 

by t h e  equat ion 

when t = t O .  

W e  can r e w r i t e  t h i s  formula i n  s c a l a r  form a s  follows: 

o r  w e  can r e w r i t e  it i n  t h e  following matr ix  form: 



- - -- -- 

-- - - - 

Recal l ing  t h e  d e f i n i t i o n  of  t h e  Jacobian matr ix  Df, we s e e-
t h a t  t h e  l a t t e r  formula can be w r i t t e n  i n  t h e  form 

(Note t h a t  t h e  matr ix  Df i s  a row matr ix ,  while t h e  matr ix  

DX is by i t s  d e f i n i t i o n  a column matr ix . )  
d 
 

This i s  t h e  form of t h e  chain r u l e  t h a t  w e  f i n d  e s p e c i a l l y  

u s e f u l ,  f o r  it is  t h e  formula t h a t  genera l i zes  t o  higher  dimen- 

s ions .  

Let us now cons ider  a composite of vec to r  funct ions  of 

v e c t o r  va r i ab les .  For t h e  remainder of t h i s  s e c t i o n ,  we assume 

t h e  following: 

Suppose f is  def ined  on an open b a l l  i n  R" about  -a ,  

t a k i n g  va lues  & Rk, wi th- -f (5) = -b. Suppose p -is  def ined  

i n  an open b a l l  about h ,  t ak ing  values i n  RP. L e t  

-F (5)  = 9(f(x)) denote -t h e  composite funct ion.  



- - - - 

i 

We s h a l l  w r i t e  these  funct ions  a s  

-f(5)= f ( x l ~ g e - r x n )  and -g ( x )  = ~ ( y l r . . . , y k ) .  

I f  f and g a r e  d i f f e r e n t i a b l e  a t  a and b 

r e s p e c t i v e l y ,  it i s  easy t o  see  t h a t  t h e  p a r t i a l  d e r i v a t i v e s  of 

-~ ( 5 )e x i s t  a t  -a ,  and t o  c a l c u l a t e  them. A f t e r  a l l ,  t h e  i-t h  

coordina te  funct ion  of  -F ( x )- i s  given by t h e  equat ion 

~f we s e t  each of  t h e  v a r i a b l e s  xQ , except  f o r  t h e  s i n g l e  

v a r i a b l e  x equal  t o  t h e  cons tan t  aQ,  then both s i d e s  a r e  
j * 

funct ions  of x  alone.  The chain  r u l e  a l ready proved then  
j 
 

g ives  us t h e  formula 

Thus 

= [i-th row of Dz] • 



- - 

-- - - - -- - - 
- - - - -  - - - 

- - 

domains, -- F (5)  = q (f(5 )) i s  cont inuous lythen  t h e  composite 

d i f f e r e n t i a b l e  --i t s  domain,on and-

1-


This  theorem i s  adequate f o r  a l l  t h e  cha in- ru le  app l i ca ­

t i o n s  w e  s h a l l  make. 

- The ma t r ix  form of andNote: t h e  cha in  r u l e  i s  n i c e  and n e a t ,  

it is  u s e f u l  f o r  t h e o r e t i c a l p u r p o s e s .  I n  p r a c t i c a l  s i t u a t i o n s ,  

one u s u a l l y  uses  t h e  s c a l a r  formula ( * )  when one c a l c u l a t e s  par- 

t i a l  d e r i v a t i v e s  o f  a composite func t ion ,  however. 

The fo l lowing  proof is  inc luded  s o l e l y  f o r  completeness ; we 
shall not need to use it: 
 

Theorem 4.  L e t  f and g be a s  above. I f  f is 
 

d i f f e r e n t i a b l e  a t  a and g i s  d i f f e r e n t i a b l e  a t  b ,  t hen  
  

is  d i f f e r e n t i a b l e  -a t  -a ,  -andI ­
DF(5) = Dg(b) Df ( a ) .  

Proof.  W e  know t h a t  

where El(k) -> 0 a s  - - L e t  us set  k  f  (a+h) - -f ( g )k -> 0. - = - - ­
i n  t h i s  formula, Then 

I 



- - 

- - 
- - 

- - -  ----- 

-- - - - - 

Thus the  Jacobian matr ix  of F s a t i s f i e s  t h e  matr ix  equat ion -

his i s  our  genera l ized  vers ion  of t h e  chain r u l e .  

There i s ,  however, a problem here.  W e  have j u s t  shown t h a t  

if f and g a r e  d i f f e r e n t i a b l e ,  then t h e  p a r t i a l  d e r i v a t i v e s  

of t h e  composite funct ion  -F e x i s t .  But we know t h a t  t h e  mere 

ex i s t ence  of t h e  p a r t i a l  d e r i v a t i v e s  of  t h e  funct ion  Fi i s  n o t  

enough t o  guarantee t h a t  Fi is  d i f f e r e n t i a b l e .  One needs t o  

g ive  a separa te  proof t h a t  i f  both -f and CJ a r e  d i f f e r e n t i a b l e ,  

then  s o  i s  t h e  composite g(x) = f(p(x)). (See Theorem 4 

following. ) 

,I One can avoid g iv ing  a  sepa ra te  proof t h a t  -F i s  

d i f f e r e n t i a b l e  by assuming a  s t r o n g e r  hypothesis ,  namely t h a t  

both f and g a r e  cont inuous ly  d i f f e r e n t i a b l e .  I n  t h i s  case ,  

t h e  p a r t i a l s  of f and g a r e  continuous on t h e i r  r e s p e c t i v e  

domains; then  t h e  formula 

which w e  have proved, shows t h a t  D.F is  a l s o  a continuous
3 i 

funct ion  of -x. Then by our  b a s i c  theorem, Fi i s  d i f f e r e n t i a b l e  

f o r  each if s o  t h a t  -F i s  d i f f e r e n t i a b l e ,  by d e f i n i t i o n .  

W e  summarize t h e s e  f a c t s  a s  follows: 

Theorem 3 .  Let  f be def ined  on an open b a l l  i n  R' 

about a ,  t ak ing  va lues  i n  Rk; l e t  - = b. - - -g- f ( a )  - Let be 

def ined  i n  an open b a l l  about b, t ak ing  va lues  i n  RP. If f 

-and p are cont inuously d i f f e r e n t i a b l e  -on t h e i r  r e spec t ive  



- - -  - 

- -£ (a)I1 .-

Now w e  know t h a t  

f (a+h) - f (a) = Df (5).-h + E2 (h)ll -hll , 

where E2 (h) -> -0 a s  -h -> -0. Plugging t h i s  i n t o  ( * * )  , we 

get t h e  equat ion 

+ El ( f (a+h)- - - - -f ( a ) ) l l f ( a+h)- - - - - - .- £ (a)ll 

Thus 

-F(g+h) - -F ( 5 )  = Dz(b) Df (5) h- - ­+ E3(h)llhll,

where 

W e  must show t h a t  E3 -> -0 a s  h -> -0. The f i r s t  term i s  

easy ,  s i n c e  D g  (b) i s  cons tan t  and <gZ(h)- -> -0 a s  h -> 0. 

Furthermore, as h -> 0, t h e  express ion  - - - - ­- - f (a+h) f (a) 
approaches -0 ( s i n c e  -f i s  cont inuous) ,  so t h a t  



- - - 

- - - 

- - - - 

- - - 

- -

E (f(g+h) - f(5)) --> 0. We need finally to show .thatthe-1 - - ­
expression 
 

is bounded as h- -> 0. Then we will be finished. Now-

Il.f(a+h) -
- - h- - - f(a)ll 

11 211 - I1 Df(a) ­- - ,I &,I E2(2)11+ 

C I1 Df(a) ull + it g2 (&) I1 , 

where u is a unit vector. Now E2(h) -> 0 as h -> 0, 

and it is easy to see that I1 Df(a) ull C nk max 1 D.f . (a)1 .- 1 3 ­
f(a+h) f(a)
(Exercise!) Hence the expression ll - - - ll/nh-U is 

bounded, and we are finished. 

Differentiating inverse functions. 


Recall that if f(x) is a differentiable real-valued 

function of a single real variable x, and if f ' ( x )  > 0 

for a g x g b, then f is strictly increasing, so it has an 

inverse g. '~urthermore, g is differentiable and its deriva-

tive satisfies the formula 

Part, but not all, of this theorem generalizes to vector 

functions. We shall show that -if f has an inverse g, and 



- - 
- - - - - -  - -- 

- - -  - - -- - - 
- - - 

-if -g is differentiable, then there is a formula for Dg 

analogcus to this one. Specifically, we prove the following: 


Theorem 5. Let S be subset of R". Suppose that 

f : A - > R  and --that f(a) = b. Suppose also that f has. an 

inverse g.-
~f f is differentiable at a, and if g is differen- 
 

tiable at b, then 
 

Proof. Because g is inverse to f ,  the equation -
-g (f(5)) = 5 holds for all x in S. Now both -f and q are-
differentiable and so is the composite function, -g(f ( 5 ) ) .  Thus 

we can use the chain rule to compute 

Dq(b) ~f(a) = D (identity) = In. 

Since the matrices involved are n by n, this equation implies 
 

that 
 

Remark 1. This theorem shows that in order for the 

differentiable function -f to have a differentiable inverse, 

it is necessary that the Jacobian matrix Df(a) have rank n. 

Roughly speaking, this condition is also sufficient for -f to 

have an inverse. 



- - 

--- 

1 
More precisely, one has the following result, which 
 

is the famous "Inverse Function Theorem" of Analysis: 
 

Suppose f is defined and continuously differentiable 
 -
in an open ball of Rn about -a, taking values in R". If 

Df (a) has rank n, then there is some (probably smaller) open 

ball B about a, such that f carries B in a 1-1 fashion 

onto an open set C in Rn. Furthermore, the inverse function 

-g : C -> B is continuously differentiable, and 

Remark 2. For a function of a single variable, y = f(x), 

the rule for the derivative of the inverse function x = g(y) 

is often written in the form 

This formula is easy to remember; the Leibnitz notation for 
 

derivatives "does the work for you". It is tempting to think 
 

that a similar result should hold for a function of several 
 

variables. It does not. 
 

For example, suppose 
 

-f(x,y) = (u,v) 

is a differentiable transformation from the x - y plane to 

the u - v plane. And suppose it has an inverse; given by 



1 

Our theorem tells us that if -f(=) = b, then 
 

~q(2)= [D~(~)I-'* 
 

If we write out these matrices in Leibnitz notation, we obtain 
 

the equation 
 

Now the formula for the inverse of a matrix gives (in the case 
 

of a 2 by 2 matrix) the formula 
 

. npplying this formula, we obtain the equation 

This means, for example, that 
 



Thus the simplistic idea that ax/av "should be" the 
 

reciprocal of av/ax is very far from the truth. The Leibnitz 
 

notation simply doesn't "do the work for you" in dimensions 
 

greater than 1. Matrix notation does.. 
 

Implicit differentiation. 

Suppose g is a function from R~~~ to R": let us 

write it in the form 

Let -c be a point of R", and consider the equation 

This equation represents a system of n equations in n + k 
unknowns. In general, we would expect to be able to solve this 

system for n of the unknowns in terms of the others. For-
instance, in the present case we would expect to be able to 

solve this system for -x in terms of y. We would also expect 

the resulting function -x = ~ ( y )to be differentiable. 

Assuming this expectation to be correct, one can then 

calculate the derivative of the resulting function 2 by using 

the chain rule, One understands best how this is done by work- 

ing through a number of examples. Apostol works several in 

sections 9.6 and 9.7. At. this point, you should read 9.6 and Ekamples 1,2,3, 

and 6 of 9.7. 



\ A natural question to ask now is the following: to what extent 1 

ourassumptions are correct, that the given equation determines x-
as a function of y . WE'discuss that questeon now. 

Fjrst let us consider the problem discussed on p. 294 of the text. 

It involves an equation of the form 

where F is continuously differentiable. Assuming that one can in theory 

solve this equation for z as; a function of x and y, say z = f(x,y). 

Apostol derives equations for the partials of this unlmown function: 

-3 F -3~a f - -- a x and - -J f - -3.L- (x1y) - 3~a x  -a F -a F 
a z a z 

Here the functions on the right side of these equations are evaluated 

at the point (x,y,f (x,y) ) . 
j 

Note that it was necessary to assume that )F/dz # 0 , in order 

to carry out these calculations. It is a remarkable fact that the condition 

aF/?z # 0 is also sufficient to justify the assumptions we made in carrying 

them out. This is a consequence of a fsrnous theorem of Analysis called the 

Implicit Function Theorem. Orie consequence of this theorem is the following: 

If one has a point (xO,yO,zO) that satisfies the equation F(x,y,z) = 0 , 
and if a F b z  # 0 at this point, then there exists a unique differentiable 

function f(x.y), defined in an open set B about (xO,yO) . such that 
f(xo,yo) = zO and such that 

F!x,ytf (xty) = 0 

for all (x,y) in B. Of course, once one hows that f exists and 

is differentiable, one can find its partials by implicit differentiation, 

as explained in the text.
I 



< 
E5(.am~le 1. Let F(x,y,z) = x2 + y2 + z2 + 1 . The equation 
 

F(x, y,z) = 0 cannot be solved for z in terms of, x and y; for in 
 

fact there is no point that satisfies the equation. 
 

Exam~Qe2. Let F(xfyfz)= x2 + y2 + z 2 - 4. The equation 

F(x,y,z) = 0 is satisfied by the point a = (0,2,0). But 3F/hz = 0 

at the point a, so the implicit function theorem does not apply. This 

fact is hardly surprising, since it is clear from the picture that z 

is not determined as a function of (x.y) in an open set about the point. 

( X ~ I Y ~ '  = (OI2). 

Hc;wever, the point b = (l,l,6) 

satisfies the equation also, and )F/~Z # 0 

Q : ( o , ~ , o )at this pint. The implicit function theorem 

3 implies that there is a function f(x,y) 

defined in a neighborhood of (xO,yO)= (1,l) 
Y 

such that f(l,l) ~= and f satisfies the 

equation F(x,y, z) = 0 identically. 

h-ote that f is not uniquely determined unless we specify its value at 

(xO.yO). There are two functions f defined in a neighborhood of (1,l) 

that satisfy the equation f(x,y,z) = 0, namely, 

z = [ 4 - x2 - y2 ]4  and z = - [4- x 2 - y2]5 . 
However, only one of them satisfies the condition f(1,1) = fi. 

Note that at the point a = (0,2,0) we do have the condition 

JF/Jy # 0. Then the implicit function theorem implies that y is 

determined as a function of (x,z) near this point. The picture makes this 

fact clear. ,L 



',
I 

Nc~w let us consider the more general situation discussed on p. 296 

of the text. We have two equations 

where F acd G are continuously differentiable. (We have inserted 

an extra variable to make things more interesting.) Assuming there are 

functions x = X(z,w) arrd y = Y(z,w) that satisfy these equations for 

all points in an open set in the (zfw) plane, we have the identities 

F(X,Y,z,w) = 0 and G(X,Y,Z,W) = o , 

whence (differentiating with respect to z), 

These are linear equations for JX/Jz and a~/az; we can solve them if the 

coefficient matrix 

is non-singular. One can use Cramerls rule, as in the text, or one 
 

can write the solution in the form 
 

The functions on the right side of this equation are evaluated at the point 

,I (~(z,w),~(z,w),z,w),so that both sides of the equation are functions 

of z and w alone. 



You can check that one obtains an equation for the other partials 
 
I 

of X and Y if one replaces z by w throughout. 
 

All this is discussed in the text. But now let us note that in 

order to carry out these calculations, it was necessary to assume that the 

matrix & F,G/$ x, y was non-singular . Again , it is a remarkable fact 

that this condition is also sufficient to justify the assumptions we have 

made. Specifically, the Implicit Function Theorem tells us that if 

( X ~ , ~ ~ , Z ~ , W ~ ) 
 and if the matrix is a point satisfying the equations (*),  

a F,G/ d x, y is non-singular at this point, then there do exist unique 

differentiable functions X(Z,W) and Y(z,w) defined in an open set about 

(zOIwO), such that 

X(zo.wo) = xo and YizoIwo)= yo . 
and such that F and G vanish identically when X and Y are substituted 


I for x and y. Thus under this assumption all our calculations are 

justified. 

r E3mple 3, Consider the equations 

The points ( x ~ , ~ ~ ~ z ~ ~ w ~ )(1.2t-lrO) ar;d (xl I Y ~ , ~ ~ I ~ ~ )  
= = (1,5121-2) 

I satisfy these equations, as you can check. WE calculate 

At the point (x~,~~,z~,w~), whichis
this matrix equals [ y ] ,  

I 
I non-singular. Therefore, there exist unique functions x = X(z,w) 

and y = Y(Z ,w) . defined in a neighborhood of (zo,w0) = (-1.0) that 



I satisfy these equations identically, such that X(-1,O) = 1 and Y(-1,O) = 2. 

SSnce we know the values of X and Y at the point (-l,O), we 
 

can find the values of their partial derivatives at this point also. Indeed, 
 

Om the other hand, at the point (xl,yl,zl,wl)= (1,f ,2,-2) the 

I matrix hF,G/bx,y equals 

I which is singular. Therefore we do not expect to be able to solve for x 

and y in terms of z -d w nc.ar this point. However, at this point, 
 
< 

we have 
 

I Therefore, the implicit function theorem implies that we can solve for x 1 and w in terms of y and z near this point. 

Exercises 
 

1. 	 Given the continuously differentiable scalar field f (x, y) , 
2 3 Find ( 1 ,  given that -9 * let +(t) = f(t ,t + 1). 	 Vf(1,2) = 5i - J . 



2. Find the point on the surface z = xy nearest the point (2,2,0). 

3. A rectangular box, open at the top, is to hold 256 cubic inches. 
 

Find the dimensions that minimize surface area. 
 

4. Find parametric equations for the tangent line to the curve of 
 

intersection of the surfaces 
 

at the point (2,1,2). 

5. Let f b e  a s c a l a r  f u n c t i o n  o f  3 v a r i a b l e s .  D e f i n e  

E x p r e s s  F 8 ( 1 )  i n  terms o f  t h e  f i r s t  o r d e r  p a r t i a l s  o f  
  

f a t  t h e  p o i n t  ( 3 , 3 , 2 ) .  
  

E x p r e s s  F " ( 1 )  i n  terms o f  t h e  f i r s t  a n d  s e c o n d  o r d e r  
  

p a r t i a l s  o f  f a t  t h e  p o i n t  ( 3 , 3 , 2 ) .  
  

2 36. Let f : R ---r R' a n d  l e t  g : R~ - R . S u p p o s e  t h a t  
  

f ( 0 , O )  = ( 1 , 2 )  -f ( 1 , 2 )  = ( 0 ' 0 ) .  
  

g ( O , O )  = ( 1 , 3 , 2 )  d l J )  = ( - 1 , O p l ) - 


Suppose t h a t  

a)  I f  h ( 4 )  =g(f(x)), f i n d  D h ( 0 , O ) .  
2 2 

b) If f has an i n v e r s e  : R - R , f i n d  D k ( 0 , O ) .  



7. Ccnsider the functions of Example 3. Find the partials 

JX/& m d  3 ~ / & at the point ( Z ~ , W ~ )(-1 , 0 ) .=

8. Fcr the functions F and G of Example 3, compute ~ ( F , G ) / . ~ ( x , ~ )  

at the point 1 , 2 - 2 )  Given the equations F = 0,  G = 0 ,  fcr which 

pairs of variables is it possible to solve in terms of the other two near 

this point? 



- --  - 
- --  

--- 

- - - - 

The second-derivative t e s t  f o r  extrema of a funct ion  of 

two va r i ab les .  

Theorem. Suppose -t h a t  f ( x l , x 2 )  has  continuous second- -
order  p a r t i a l  d e r i v a t i v e s  - - -i n  a  b a l l  B about a .  Suppose -t h a t  

Dlf -and D2f vanish -a t  a .  -Let 

A = D1llf(a)l B = DlI2f(a), C = D212f(=) .  

( a )  -I f  B2  - AC > 0, then f has a sadd le  po in t  a t  a .  

(b) If B~ - AC < 0 and A > 0, then f has a r e l a t i v e  

(c) -I f  B 2  - AC < 0 -and A < 0 ,  then  f - -- has a  r e l a t i v e  

maximum -a t  a .  

(d)  If B L  - AC = O I  t h e  t e s t  i s  inconclusive.  

Proof. S tep  1. W e  f i r s t  prove a ve r s ion  of Tay lo r ' s  theorem 

wi th  remainder f o r  func t ions  of two var iab les :  

Suppose f  (xl ,  x2)  has continuous second-order p a r t i a l s  i n  a  

b a l l  B centered  a t  a .  Let  v- be a f ixed  vec to r ;  say-
-v = ( h l k ) .  Then 

* 
where a is  some p o i n t  on t h e  l i n e  segment from a t o  a + tv. 

W e  d e r i v e  t h i s  formula from t h e  s ing le -va r i ab le  form of 

Taylor '  s theorem. L e t  g (t)= f  (=+tv) - , i.e .  , 



L e t  F ( t v )  denote t h e  l e f t  s i d e  of  t h i s  equat ion.  W e-
w i l l  be concerned about t h e  s ign  of F ( t v )  when t i s  smal l ,  

because t h a t  s i g n  w i l l  depend on whether f  has  a  l o c a l  maxi- 

mum o r  a l o c a l  minimum a t  -a ,  o r  n e i t h e r .  

S tep  3 ,  From now on, l e t  v = (h ,k)  be a u n i t  vec to r .  -

Consider t h e  q u a d r a t i c  funct ion  

W e  s h a l l  determine what va lues  Q t akes  a s  -v v a r i e s  over  t h e  

u n i t  c i r c l e .  

Case 1. I f  B~ - AC < 0 ,  then  w e  show t h a t  Q (v) has 

t h e  same s i g n  a s  A ,  f o r  a l l  u n i t  vec to r s  v. 
Proof.  When -v =  ( 1 , 0 ) ,  then  Q(v) = A ;  thus  Q(v) 

has t h e  same s i g n  a s  A i n  t h i s  case .  ~ o n i i d e r  t h e  continuous 

funct ion  Q ( c o s  t ,  s i n  t ) .  A s  t ranges over  t h e  i n t e r v a l  

[ O  ,21~1, t h e  v e c t o r  (cos t ,  s i n  t) ranges over  a l l  u n i t  vec to r s  

i n  V2. I f  t h i s  funct ion  t a k e s  on a  va lue  whose s i g n  is  d i f f e r ­

e n t  from t h a t  of  A, then by t h e  intermediate-value theorem, 

t h e r e  must be a to such t h a t  Q ( c o s  to, s i n  to)= 0. That is ,  

f o r  some u n i t  v e c t o r  (ho,ko). Now i f  ho # 0, t h i s  means t h a t  

t h e  number ko/ho i s  a real r o o t  o f  t h e  equat ion  



g ( t )  = f ( a l  + t h ,  a 2  + t k ) .  

2We know t h a t  g ( t )  = g ( 0 )  + g l ( 0 ) - t + g W ( c ) * t/2! where c is  

between 0 and t. Ca lcu la t ing  the d e r i v a t i v e s  o f  g g ive s  

* 
from which formula ( * )  fol lows.  Here -a = -a + cv,- where c i s  

between 0 and t. 

S t ep  2. I n  t h e  p r e sen t  case,  +&e f i r s t  p a r t i a l s  of  f 

vanish a t  so  t h a t  

The on ly  reason this approximation r a t h e r  than e q u a l i t y  
* 

i s  t h a t  t h e  second p a r t i a l s  a r e  evaluated  a t  the unknown p o i n t  -a 

i n s t e a d  of  a t  a ,  This  matter w i l l  be disposed of  by using-
elementary eps i l on i c s .  Formally, 	w e  have t h e  equat ion 

f (a*)-A] h2 + 2 [Dl. Zf (=*) -B]hk + 	 [ D ~2f (a*)  -c] k2.+ 	ED1.l - ­
* 

Note t h a t  t h e  l a s t  three terms a r e  s m a l l  i f  -a i s  c l o s e  to  

-a , because t h e  second p a r t i a l s  are continuous. i 



1 

~ u tthi,s equation has a real root only if B~ - AC > 0.\ 

Similarly, if ko Z 0, the number ho/ko is a real root of the 


equation 


again we conclude that B~ - AC > 0. Thus in either case we are 

led to a contradiction. 

Case 2. If B~ - AC > 0, then we show that Q (v) takes 

on both positive and negative values. 

Proof. If A # 0, the equation Ax2 + Bx + C = 0 has 

two distinct real roots. Thus the equation. y = Ax 
2 + 2Bx + C 

represents a parabola that crosses the x-axis at two distinct 

points. On the other hand, if A = 0, then B # 0 (since 

B2 - AC > 0 ) ;  in this case the equation y = Ax
2 + 2Bx + C 

represents a line with non-zero slope. It follows that in 

either case, there is a number xo for which 

and a number xl for which 
 

-Let (ho,ko) be a unit vector with ho/ko - xo and let (hl,kl) 

be a unit vector with hl/kl = xl. Then Q(ho,k,) < 0 and 



i 

Step 4 .  W e  prove p a r t  (a )  of t he  theorem. Assume 

B~ - AC > 0. L e t  % be a u n i t  vector  f o r  which Q(&) > 0.  

Examining formula ( * * ) ,  w e  see 	t h a t  the  expression 

2 [f(a+tv)- - - f (a)I /tL approaches 

Q(vo) a s  t -> 0. L e t  

a 	 -x = -a + t v- and l e t  t -> 0. 
L 

Then -x approaches -a along the  

s t r a i g h t  l i n e  from -a t o  -a + G, and t h e  expression 

f (5) - f (2) approaches zero through p o s i t i v e  values. On t h e  

o t h e r  hand, i f  vl i s  a po in t  a t  which Q(vl) < 0, then t h e  

same argument shows t h a t  a s  -x approaches -a along t h e  s t r a i g h t  

l i n e  from -a t o  5 + vl, the expression f (5) - f (5) approaches 

-0 through negative values.  

W e  conclude t h a t  f has  a saddle  p o i n t  a t  -a .  


S tep  5. W e  prove p a r t s  (b) and (c) o f  theorem. 


Examining equation (**) once again. W e  know t h a t  ( Q ( x )  1 > 0 

f o r  a l l  u n i t  vec tors  v. I Q  (1) has a p o s i t i v e  minimum Then I 
m, a s  v- ranges over  a l l  u n i t  vectors .  (Apply t h e  extreme- 

value theorem t o  t he  continuous funct ion [Q(COS t, s i n  t)1 ,  f o r  

0 < t G 2r.) Now choose 6 small  enough t h a t  each of the t h r e e  

square-bracketed expressions on t h e  r i g h t  s i d e  of (**) is less 
* 

than  m/3 whenever -a i s  wi th in  6 of  -a .  Here w e  use continu ­
* 

i t y  of the second-order p a r t i a l s ,  I f  0 < t < 6 ,  then -a i s  on 

t h e  l i n e  from -a t o  -a + 6v;- s ince  v- is a u n i t  vec tor ,  then 

the r i g h t  s i d e . 0 5  (*) has  t h e  same s i g n  a s  A whenever 0 < t < 6. 

I f  A > 0, t h i s  means t h a t  f (x)- - f (a)- > 0 whenever 
) 



- - 
- - 

- - 

0 < Ix-a 1 < 6 ,  so f h a s  a r e l a t i v e  minimum a t  a. If  A < 0,  

I then  f (51 - f ( a )  < 0 whenever 0 < Ix-a1 < 6 ,  s o  f h a s  a rela­-
t i v e  maximum a t  a .-

Ear examples illustrating ( d ) ,  see the exercises. a 
Exerc ises  

1. Show t h a t  t h e  f u n c t i o n  x4 + y4 has a r e l a t i v e  minimum 

a t  the o r i g i n ,  whi le  t h e  f u n c t i o n  x 4 - y4 has  a s a d d l e  p o i n t  

t h e r e .  Conclude t h a t  t h e  second-der iva t ive  test  is inconc lus ive  

2. U s e  Tay lo r ' s  theorem t o  d e r i v e  the second d e r i v a t i v e  

test  f o r  maxima and minima o f  a func t ion  f (x )  o f  a s i n g l e  v a r i -  

a b l e .  If f 1(a) = f" ( a )  = 0 and f"' ( a )  # 0, what can you say  

abou t  t h e  e x i s t e n c e  o f  a r e l a t i v e  maximum o r  minimum a t  f a t  a?  

3 .  Suppose f (x) has  cont inuous d e r i v a t i v e s  o f  o r d e r s  

! , . . . , n + l  near  x = a. Suppose 

and f("+l)(a)  # 0.  What can  you say  about  t h e  e x i s t e n c e  o f  a r e l a ­

t i v e  maximum o r  minimum. o f  f a t  a ?  Prove your answer c o r r e c t .  

4 .  ( a )  Suppose f (xl, x2) h a s  cont inuous t h i r d - o r d e r  

p a r t i a l s  near  -a.  Derive a th i rd -o rde r  ve r s ion  o f  

the preceding theorem. 

(b) Derive t h e  genera l  ve r s ion  o f  Tay lo r ' s  

f u n c t i o n s  o f  two v a r i a b l e s .  

[The fo l lowing "opera to r  n o t a t i o n "  i s  convenient  . 

(hDl+kD2) f Ix=a = (a)- + k ~ ~ f­- - h ~ ~ f  (a), 

2 2 ­

formula ( * )  of  

theorem f o r  

2(hDl+kD2) f 1 x=a = h DIDlf (a) + 2hkD1D2f (5) + h DZD2f (5), 

and s i m i l a r l y  f ~ r  (hDl+kD2) 1 
I 



The extreme-value theorem and the small-span theorem. 
 

The proofs of the extreme-value theorem and small-span 
 

theorem for rectangles given in Apostol at~sufficiently con- 
 

densed to cause some students difficulty. Here are the details. 
 

We shall prove the theorems only for R', but the proofs go 
 

through without difficulty in R ~ .  
  

A rectangle Q in R~ is the Cartesian product of two 
 

closed intervals [a,b] and [c,dl; 
 

Q = [a,b] x [c,d] = {(x,y) I a ( x ( b and c 5 y ( d). 
! 

The intervals [a,b] and [c,d] are called the comuonent 

intervals of Q. If 

P1 = {X~'X~'* .'xn] 

is a partition of [a,b], and if 

P2 = { Y ~ J Y ~ S * . . , Y ~ ~  

is a partition of [c,dJS then the cartesian product P1 x P2 

is said to be a partition of Q. Since P1 partitions [a,b] 

into n subintervals and P2 partitions [c,d] into m 

subintervals, the partition P = P1 x P2 partitions Q into 

mn subrectangles, namely the rectangles 



--- 
---

Theorem (small-s~an theorem). Let f be 2 scalar function that 
 

-is continuous on the rectangle 
 
Q = [a,bl x [c,dl 
 

-in R 2 . Then, given 6 > 0 ,  there is q partition of Q such 

-that f is bounded on every subrectanale of the partition and 

such that the span of f in every subrectangle of the partition 
 

is less than 
6 0  

Proof. For purposes of this proof, let us use the 

following terminology: If Qo is any rectangle contained in 

Q, let us say that a partition of P o  is tt6-nice" if f is 

bounded on every subrectangle R of the partition and if the 

. span of f in every subrectangle of the partition is less than 

r. We recall that the span of f in the set S is defined by 
 

the equation 
 



I 

R e c a l l  a l s o  t h a t  i f  S1 is  a s u b s e t  o f  S ,  t h e n  

s p a n  f s p a n S  f .  
1 

To b e g i n ,  w e  n o t e  t h e  f o l l o w i n g  e l e m e n t a r y  f a c t :  S u p p o s e  

-Q o  - [ a o , b o I  x [ c o , d 0 I  

i s  a n y  r e c t a n g l e  c o n t a i n e d  i n  Q .  L e t  u s  b i s e c t  t h e  f i r s t  com­

p o n e n t  i n t e r v a l  [ a o , b o ]  o f  Po i n t o  two  s u b i n t e r v a l s  

I1 = [ a o , p J  a n d  I2 = [ p , b o ] ,  w h e r e  p is  t h e  m i d p o i n t  o f  

[ a o , b o ] .  S i m i l a r l y ,  l e t  u s  b i s e c t  [ c o , d 0 ]  i n t o  two s u b i n t e r -  

v a l s  J1 a n d  J2.  Then Qo  i s  w r i t t e n  a s  t h e  u n i o n  o f  t h e  

f o u r  r e c t a n g l e s  

I1 x J1 a n d  I2 x J1 a n d  I1 x J a n d  I2 x J2.2 

Now if e a c h  o f  t h e s e  r e c t a n g l e s  h a s  a p a r t i t i o n  t h a t  is eo-

n i c e ,  t h e n  w e  c a n  p u t  t h e s e  p a r t i t i o n s  t o g e t h e r  t o  g e t  a p a r t i ­

t i o n  o f  Qo t h a t  i s  r o - n i c e .  The f i g u r e  i n d i c a t e s  t h e  p r o o f ;  

e a c h  of t h e  s u b r e c t a n g l e s  o f  t h e  n e w  p a r t i t i o n  i s  c o n t a i n e d  i n  a 

s u b r e c t a n g l e  o f  o n e  o f  t h e  o l d  p a r t i t i o n s .  



Now we prove the theorem. We suppose the theorem is 

false and derive a contradiction. That is, we assume that for 

some eo > 0, the rectangle Q has no partition that is ao­

nice. 

Let us bisect each of the component intervals of Q, 
 

writing Q as the union of four rectangles. Not all of these 
 

smaller rectangles have partitions that are so-nice, for if 
 

they did, then Q would have such a partition. Let Q1 be one 
 

of these smaller rectangles, chosen so that Q1 does not have a 
 

partition that is nice. 
 
i 

Now we repeat the process. Bisect each component inter- 
 

val of Q1 into four smaller rectangles. At least one of these 
 

smaller rectangles has no partition that is eo-nice; let Q2 
 

denote one such. 
 

Continuing similarly, we obtain a sequence of rectangles 
 

none of which have partitions that are ro-nice.' Consider the 
 

left-hand end points of the first component interval of each of 
 

these rectangles. Let s be their least upper bound. Similar-


ly, consider the left-hand end points of the second component 
 

interval of each of these rectangles, and let t be their least 
 

upper bound. Then the point (s,t) belongs to all of the rec- 
 

I tangles Q, Q1, Q2,. .. . 



1 

Now we use the fact that f is continuous at the point 

(s,t). We choose a ball of radius r centered at (s,t) such 

that the span of f in this ball is less than r o .  Because the 

rectangles Qm become arbitrarily small as m increases, and 

because they all contain the point ( s , t ) ,  we can choose m 

large enough that Qm lies within this ball. 

Now we have a contradiction. Since Qm is contained in 
 

the ball of radius r centered at (s,t), the span of f in 
 

is less than But this implies that there is a parti- 
 Qm 
 

tion of Qm that is iO-nice, namely the trivial partition! 

Thus we have reached a contradiction. O 

Corollary. Let f be a scalar function that continu­

--- 9. Then . f 9.ous on the rectangle & bounded 
Proof. Set i = 1, and choose a partition of Q that 

is a-nice. This partition divides Q into a certain number of 

subrectangles, say Rl,...,R >Now f is bounded on each of mn' 


these subrectangles, by hypothesis; say 


If(i)l S Mi for 1~ e Ri. 
 

Then if M = max{M1, ...,M } we have 
 mn 
 

If(x)l I M 

for all y E Q. I3 

Theorem (extreme-value theorem). -Let f be a scalar 

function that continuous OJ the rectangle Q. Then there are 
) 

points xo and xl -of Q such that 



f(xo) I f(x)- -( f(x-1 
-- x E Q.for all 


Proof. We know f is bounded on Q; let 


M = sup{f(x) I x e  Q). 

We wish to show there is a point x1 of Q such that 

f(xl) = M. 

Suppose there is no such a point. Then the function 

M - f(x) is continuous and positive on Q, so that the func- 

tion 

is also continuous and positive on Q. By the preceding corol- 

lary g is bounded on Q; let C be a positive constant such 

that g(y)  < C for x e Q. Then 

-1 f ( x )  < C ,  or-
f(x) I M - (l/C) 

for all in Q. Then M - (1/C) is an upper bound for the 

set of values of f(5) for q in Q, contradicting the fact 

that M is the least upper bound for this set. 

A similar argument proves the existence of a point Xo 

of Q such that 

f(so) = inf{f(s)I x e Q). a 



! Exercises on line inteqrals 

1. Find the centroid of a homogeneous wire in shape of the 
 

parabolic arc 
 

y = x  for -1 s x 5 p. 
' 


[Use a table of integrals if you wish.] 
 

2. Let 
 

on the set S consisting of all ( x , y )  + 0. 

(a) Show that D2f1 = DlfZ on S. 

(b) Compute the line integral 2 da from ( a , O )  t o  

( - s , ~ )  when C is the upper half of the circle x 2  + y2 = a2. 
Compute it when C is the lower half of the same circle. 

3. Let f be as in problem 2. Let U be the set of all 

( x , y )  with x > 0.  Find a potential function for f that is 

defined in U. i -- - :  fi 

+ ( x , g ~ =  J - F ~ A  i * ~ n r ~ i t t e-T --. 

C CLccrYc ­

4. Letf be a continuous vector field defined in the open, connected 

subset s of R". Suppose that f = m d  =.a%in s. %OW 

that - *2 is a constant function. ­[~int:Apply Thoerem 10.3. ] 

I 



- - --
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Notes -on double integrals. 
 
(Read 11.1-11.5 of Apostol.) 
 

Just as for the case of a single integral, we have the 
 

following condition for the existence of a double integral: 
 

Theorem 1 (Riemann condition). Suppose f -is defined on-
Q = [arb] x [c,d]. Then f is integrable on Q if and only -if 
given any E > 0, there are step functions s - t with­-- and 

s < f < t -on Q, such that 

Let A be a number. If these step functions - s  -and t satisfy 
 

-the further condition that 

-then A = 11 f. 
Q 
 

The proof is almost identical with the corresponding proof 
 

for the single integral. 
 

Using this condition, one can readily prove the three 
 

basic properties--linearityr additivity, and comparison--for the 
 

integral f. We state them as follows: 
 

Theorem 2. (a) Suppose f -and g -are integrable -on Q. 

--- cf(x) + dg(x); furthermore,Then so is 




- -- - 
------ 

-- - 

- - -- - - 

(b)  L e t- Q be subdivided i n t o  two rec tangles  Q1 and 

Q2. -Then f -is  i n t e g r a b l e  over Q i f  and only i f  i t  i s  

i n t e g r a b l e  over both Q1 and Q2; furthermore,  

(c) I f  f g on Q, and i f  f and g a r e  i n t e g r a b l e  

over  Q, then-

TO prove t h i s  theorem, one f i r s t  v e r i f i e s  these  r e s u l t s  

f o r  s t e p  funct ions  (see 11 .3 ) ,  and then  uses t h e  Riemann condi- 

t i o n  t o  prove them f o r  genera l  i n t e g r a b l e  funct ions .  The proofs  

a r e  very s i m i l a r  t o  those  given f o r  t h e  s i n g l e  i n t e g r a l .  

W e  g ive  one of t h e  proofs  a s  an i l l u s t r a t i o n .  For 

example, consider  t h e  formula 

+lJQ I f  = JJ, f + I\Q g, 

where f and g are i n t e g r a b l e .  W e  choose s t e p  funct ions  sl, 

s2, tl, t2 such t h a t  J 

s1 C f C tl and S2 C g < t2 

on Q, and such t h a t  



We then find a single partition of Q relative to whi.ch all of 

sl, s2, tl, t2 are step functions; then sl + s2 and tl + t2 

are also step functions relative to this partition. Furthermore, 

one adds the earlier inequalities to obtain 

Finally, we compute 
 

this computation uses the fact that linearity has already been 

proved for step functions. ~ h u s  JJQ (f + g) exists. TO 

calculate this integral, we note that 

by definition. Then
' 

here again we use the linearity of the double integral for step 
 

functions. It follows from the second half of the Riemann 
 



- -  - - 
- -- - -- 

conditi.on that (f + g) must equal ;he number 
Q 
 

up to this point, the development of the double integral 
 

has been remarkably similar to the development of the single 
 

integral. Now things begin to change. We have the following 
 

basic questions to answer: 
 

(1) Under what conditions does ( f exist? 
"Q 
 

(2) 	r f  11 	f exists, how can one evaluate. it? 
Q 


( 3 )  Is there a version of the substitution rule for double 

integrals? 
 

(4) What are the applications of the double integral? 

We shall deal with questions (l), ( Z ) ,  and (4) now, postponing 

question (3) until the next unit. 
 
I 

Let us tackle question (2) first. How can one evaluate 
 

the integral if one knows it exists? The answer is that such 
 

integrals can almost always be evaluated by repeated one-dimen- 
 

sional integration. More precisely, one has the following theorem: 
 

Theorem 3 (Fubini theorem). -Let f -be defined -and bounded 
on a rectangle Q = [a rb]  x [c,d], -and assume that f is 

integrable on Q. For each fixed y in [c,d], assume that the 

-one-dimensional integral 

exists. Then the integral A ( y )  dy exists, and furthermore, --	 , 

1 



I 
proof. We need to show that [X(y)dy exists and equals 

the double integral ,b f *  
  

Choose step functions s (x,y) and t(x,y) , defined on 

Q, such that s(x,y) C f (x,y) t(x,y), and 

his w e  can do because f exists. For convenience, choose 

s and t so they are constant on the ?artition lines. (This 
 

does not affect their double integrals.) Then the one-dimen- 
 

sional integral 
 

exists. [For, given fixed y in [c,d], the function s(x,y) 


is either constant (if y is a partition point) or a step 


function of x; hence it is integrable.] Now I claim that the 
b 

function S (y) = s(x,y)dx is a step function on the interval 

c -< y -< d. For there are partitions xo,...,x and yo,.-.,ynm 
 
of [arb] and [c,d], respectively, such that s(x,y) is 

constant on each open rectangle ( x ~ - ~ , x ~ )( ~ ~ - ~ , y ~ ) .yx Let 
-

and y be any two points of the interval Then 

s(x,y) = s(x.7) 

in x i , x i  ; 

the fact that 

fore 
 

holds -- x. (This is immediate if x isfor all 

if x is a partition point, it follows fram 

s is constant on the partition lines.) here­
I 



Hence S (y) is constant on y j y j  so it is a step func- 
 

tion. 
 

A similar argument shows that the function 
 

is a step function for c -< y -< d. 
- . .  

Now since s 5 f 5 t for all (xfy), we have 

j .­
by the comparison theorem. (T3emiddle integral exists by 

hypothesis.) That is, for all y in [c,d], 

Thus S and T are step functions lying beneath and above A, 
 

respectively, Furthermore 
 

(see p. 3561, so that .. 
) 



It fo l lows  t h a t  A(y)dy exists, by t h e  Riemann cond i t ion .  

Now t h a t  w e  know A(y) i s  i n t e g r a b l e ,  w e  can conclude 

from a n  e a r l i e r  i n e q u a l i t y  that  

that is, 

! But i t  is a l s o  t r u e  that  

by d e f i n i t i o n .  S ince  t h e  i n t e g r a l s  o f  s and t a r e  less than  

E a p a r t ,  we conclude L l a t  A ( Y )dy and f a r e  w i t h i n  E 

of each o t \ e r .  Because E i s  a r b i t r a r y ,  they  must be equal .  a 
with  t h i s  theorem a t  hand, one can proceed t o  c a l c u l a t e  

some specific double i n t e g r a l s .  Severa l  examples a r e  worked o u t  

i n  1 1 . 7  and 11.8 of  Apostol. 

NOW l e t  us t u r n  t o  t h e  f i r s t  of our  b a s i c  ques t ions ,  t h e  

one concerning t h e  ex i s t ence  of t h e  double i n t e g r a l .  W e  r e a d i l y  

prove t h e  fol lowing : 
i 



- - - 
-- 

Theorem 4 .  The i n t e g r a l  f e x i s t s  i f  f is  

continuous on t h e  r e c t a n g l e  Q. 

~ r o o f .  A l l  one needs i s  t h e  small-span theorem of p C. 27 

Given E ' ,  choose a p a r t i t i o n  of Q such t h a t  t h e  span 

of f on each subrec tangle  of t h e  p a r t i t i o n  i s  less than E ' .  

If Q i j  is  a subrec tangle ,  l e t  

'i j = min f ( x )  on Qij: tij = max f (x)  on Qi j .  

Then tij - sij < E ' .  U s e  t h e  numbers sij and tij t o  o b t a i n  

s t e p  funct ions  s and t wi th  s < f G t on Q. One then  has 

JJ*(t - s )  < ~ ' ( d- c ) ( b  - a ) .  

I 

This number equa l s  E i f  w e  begin t h e  proof by s e t t i n g  
  

E = E/ (d-c) (b-a) . 
 
I n  p r a c t i c e ,  t h i s  e x i s t e n c e  theorem i s  n o t  nea r ly  s t r o n g  

enough f o r  our  purposes,  e i t h e r  t h e o r e t i c a l  o r  p r a c t i c a l .  W e  

s h a l l  d e r i v e  a theorem t h a t  is  much s t ronger  and more use fu l .  

F i r s t ,  we need some d e f i n i t i o n s :  

Def in i t ion .  I f  Q = [a ,b]  x [c ,d]  i s  a r e c t a n g l e ,  w e  

d e f i n e  t h e  -area o f  Q by t h e  equa t ion  

a r e a  Q.= I\ 1; 
Q 
 

Of course ,  s i n c e  1 is  a s t e p  funct ion ,  we can c a l c u l a t e  
i 

t h i s  i n t e g r a l  d i r e c t l y  as t h e  product  (d-c) (b-a). 



A d d i t i v i t y  of impl ies  t h a t  i f  we subdivide Q i n t o  

two r e c t a n g l e s  Q1 and Q 2 ,  then 

a r e a  Q = a r e a  Q1 + a rea  Q*. 

Applying t h i s  formula repeatedly ,  w e  s e e  t h a t  i f  one has a p a r t i -  

t i o n  of Q ,  then 

a r e a  Q =  l i , j  a r e a  Q i j ,  

where t h e  summation extends over  a l l  subrec tangles  of  t h e  p a r t i t i o n .  

1t now fol lows t h a t  i f  A and Q a r e  r ec tang les  and 

A c Q,  then a r e a  A a r e a  Q. 

Def in i t ion .  Let  D be a subse t  of t h e  plane.  Then D i s  

s a i d  to  have con ten t  -zero i f  f o r  every E > 0, t h e r e  i s  a f i n i t e  

set of r e c t a n g l e s  whose union con ta ins  D and t h e  sum of whose 

a r e a s  does n o t  exceed E .  

Examples. 

(I) A f i n i t e  set  has  con ten t  zero.  

( 2 )  A h o r i z o n t a l  l i n e  segment has  con ten t  zero. 

( 3 )  A v e r t i c a l  l i n e  segment has  con ten t  zero.  

( 4 )  A s u b s e t  o f  a set of  con ten t  zero  has  con ten t  zero. 

(5) A f i n i t e  union o f  sets of  c o n t e n t  zero  has  con ten t  zero. 

(6) The graph o f  a cont inuous func t ion  

y = $(x); a < x <.b 

has  c o n t e n t  zero.  
i 



( 7 )  The graph of a continuous function 

x = $ ( y ) ;  c G y 9 d  

has content  zero. 

Most of these  statements a r e  t r i v i a l  t o  prove: only t h e  
  

l a s t  t w o  requ i re  some care.  L e t  us prove ( 6 ) .  Let E '  > 0.  
  

Given the  continuous function , l e t  us use the  small- 
 

span theorem f o r  functions of a s ing l e  var iab le  t o  choose a 
 

p a r t i t i o n  a = xo < x l  < ... < xn. = b of [a,b] such t h a t  t he  

span of on each subinterval  is  less than E ' .  Consider t he  $J 

rec tangles  

f o r  i = l, . . . ,n. They cover the  graph of Q ,  because 

1 ( 1  - Q x i 1 < E whenever x i s  i n  the i n t e r v a l  ,xi] . 
The t o t a l  area  of t h e  rec tangles  Ai equals  

( x ~ - xi-1) 2 € '  = 2 c 1 ( b - a ) .  
i=l 



- - -  - - -  - 
-- - - -  - 
-- -- - 
- - --- 

i 

T h i s  	number equa l s  E i f  w e  begin t h e  proof by s e t t i n g  

E = 	e/2  (b-a) . 

We now prove an elementary f a c t  about sets of con ten t  zero: 

Lemma 5. Let  Q be a r ec tang le .  L e t  D be a subse t  of  

Q t h a t  has con ten t  zero.  Given E > 0 ,  t h e r e  i s  a p a r t i t i o n  of 

Q such t h a t  those  subrec tangles  of  t h e  p a r t i t i o n  t h a t  con ta in  

p o i n t s  of  D have t o t a l  a r e a  l e s s  than  E. 

Note t h a t  t h i s  lemma does no t  s t a t e  merely t h a t  D is 

contained i n  t h e  union of  f i n i t e l y  many subrectangles  of t h e  par- -
t i t i o n  having t o t a l  a r e a  l e s s  than  E, but  t h a t  t h e  sum of t h e  

a r e a s  o f  a l l  t h e  subrec tangles  t h a t  con ta in  p o i n t s  of D i s  l e s s-
than  E. The fol lowing f i g u r e  i l l u s t r a t e s  t h e  d i s t i n c t i o n ;  D 

is  contained i n  t h e  union of two subrec tangles ,  b u t  t h e r e  a r e  

seven subrec tangles  t h a t  con ta in  p o i n t s  of D. 

Proof.  F i r s t ,  choose f i n i t e l y  many r e c t a n g l e s  

A1,...,An of t o t a l  a r e a  l e s s  than  c/2 whose union con ta ins  D. 

"Expandm each one s l i g h t l y .  That is ,  f o r  each i, choose a 

,J 	 r e c t a n g l e  A i  w h o s e i n t e r i o r  c o n t a i n s  Ai, such t h a t  t h e  a r e a  of  

A; i s  no more than  t w i c e  t h a t  of  Ai. Then the union of  t h e  



s e t s  I n t  A i  con ta ins  D ,  and t h e  r ec tang les  A; have t o t a l  

a r e a  l e s s  than  Of course,  t h e  r ec tang le  may extend 

o u t s i d e  Q,  s o  l e t  A: denote t h e  r ec tang le  t h a t  i s  t h e  

i n t e r s e c t i o n  of A: and Q. Then t h e  r ec tang les  A: a l s o  

have t o t a l  a r e a  l e s s  than  E.  

Now use t h e  end po in t s  of t h e  component i n t e r v a l s  of the  

r e c t a n g l e s  AT t o  d e f i n e  a  p a r t i t i o n  P of t h e  r e c t a n g l e  Q. 

See t h e  f i g u r e .  

W e  show t h a t  t h i s  i s  o u r  d e s i r e d  p a r t i t i o n .  

Note t h a t  by cons t ruc t ion ,  t h e  r e c t a n g l e  Aj; is  par t i , t ioned 

by P ,  s o  t h a t  it is  a union of subrec tangles  Qi j  of P. 

Now i f  a subrec tangle  Qij  con ta ins  a p o i n t  of D ,  then  

it con ta ins  a  p o i n t  o f  I n t  A1; f o r  some kt s o  that it a c t u a l l y  

l i e s  i n  % and hence i n  Ai;. Suppose w e  l e t  B denote t h e  union 

of  a l l  t h e  subrec tangles  Qi j  t h a t  con ta in  p o i n t s  of D ;  and l e t  

A be the union of t h e  r e c t a n g l e s  A A Then B C A. 



- - 

It follows that 
 

1 area Qij L
Q~j~~ area Qij*


Q~j~~ 
 

NOW on the other hand, by additivity of area for rectangles, 
 

It follows that 
 

This last inequality is in general strict, because some sub-

rectangles 'i j 
belong to more than one rectangle , so 

their areas are counted more than once in the sum on the right 
 

side of the inequality. 
 

It follows that 
 

as desired. 0 

Now we prove our basic theorem on existence of the double 

Theorem 6. If f is bounded on- Q, and is continuous 
 
on Q except on a set of content zero, then exists.
- -- - - -- I/', f 



Proof. S t e ~  1.We prove a preliminary result: 
 

Suppose that given e > 0, there exist functions g and h that are integrable over Q, such 
 

that 

g(x) I f(x) l h(x) for x in Q 

and 

Then f is integrable over Q. 

We prove this result as follows: Because h and g are integrable, we can find step 

functions sl, s2, tl, t2  such that 

s1 1g 5 t l  and s2 5 h j t2, 

and such that 

Consider the step functions sl and t2. We know that 

s 1 I g l f 1 h 1 t 2  

so sl is beneath f, and t2 is above f. Furthermore, because the integral of g is between 

the integrals of sl and of tl, we know that 

Similarly, 

If we add these inequalities and the inequality 

we have 

Since e is arbitrary, the 'kiemann condition is satisfied, so f is integrable over Q. 



S t e ~2. Now we prove the theorem. Let D be a set of zero content containing the 

discontinuities of f. Choose M so that If(x) 1 5 M for x in Q; then given r > 0, set r t  = 

r/2M. Choose a partition P of Q such that those subrectangles that contain points of D 

have total area less than 6 ) .  (Here we use the preceding lemma.) 

Now we define functions g and h such that g < f < h on Q. If Q.. is one of the 
13 

subrectangles that does not contain a point of D, set 

g(x) = f(x) = h(x) 

for x E Q. .. Do this for each such subrectangle. Then for any other x in Q, set 
1J 

g(x) = -M and h(x) = M. 

T h e n g S f S h o n Q .  

Now g is integrable over each subrectangle Q.. that does not contain a point of D, 
1J 

since it equals the continuous function f there. And g is integrable over each sub- 

rectangle Q.. that does contain a point of D, because it is a step function on such a 
1J 

subrectangle. (It is constant on the interior of Q. ..) The additivity property of the 
U 

integral now implies that g is integrable over Q. 

Similarly, h is integrable over Q. Using additivity, we compute the integral 

JLQ (h-g) = 1J J (h-g) = 2M 1(area Q~ that contain points of D) 
Qij 



-- 

I 

Thus the conditions of Step 1hold, and f is integrable over Q. 

Theorem 7. Sup~osef & bounded onQ, and f eauals 0 except on a set D of content 

-- zerozero. Then JJQf exists and ~ Q U ~ S

Proof. We apply Step 2 of the preceding proof to the function f. 

Choose M so that If(x)l 5 M for x in Q; given E > 0, set E' = E / ~ M .Choose a 

partition P such that those subrectangles that contain points of D have total area less 

than E'. 

Define functions g and h as follows: If Q.. is one of the subrectangles that does not 
1J 

contain a point of D, set g(x) = f(x) = 0 and h(x) = f(x) = 0 on Q. .. Do this for each 
1J 

such subrectangle. For any other x in Q, set 
 

g(x) = -M and h(x) = M. 
 

T h e n g S f s h o n Q .  

Now g and h are step functions on Q, because they are constant on the interior of 

each subrectangle Q. .. We compute 
1J 

h = M (1(area Q.. that contain points of D))
JJQ 13 

Similarly, 

E ,  SO that f is integrable over Q. Furthermore, 

Since E is arbitrary, 

Corollary 8. a IJQf exists, and if g g bounded function that eauds f except on a 

set of content 



- - -  

\ Proof.  We w r i t e  g = f + ( g - f ) .  Now f i s  i n t e g r a b l e  

by hypothesis ,  and g - f i s  i n t e g r a b l e  by t h e  preceding 

c o r o l l a r y .  Then g i s  i n t e g r a b l e  and 

Double i n t e g r a l s  extended over  more genera l  regions.  

(Read s e c t i o n  1 1 . 1 2  of Apostol.) I n  t h i s  s e c t i o n ,  

~ p o s t o l  d e f i n e s  [IS f f o r  a  funct ion  f  def ined on a bounded 

s e t  S, bu t  then he  quickly  r e s t r i c t s  himself t o  t h e  s p e c i a l  

case  where S is a region of Types I o r  11. We d i scuss  he re  

t h e  genera l  case .  

F i r s t ,  w e  prove t h e  following b a s i c  ex i s t ence  theorem: 

Theorem 9. L e t  S be a  bounded set i n  t h e  plane.  I f  
J-Mm,EZ-bn.slLYUll -

Bd S has con ten t  zero, and i f  f i s  continuous a t  each p o i n t  - --- -1 -­

-of I n t  S, -then  $JS f e x i s t s .  

-Proof. Let Q b e  a rec tangle  c o n t d h i n g  S. As usual.  

l e t  ? equal f on S, and le t  T equal  0 outs ide  S. Then 
N 

f is  continuous a t  each point  xo of t h e  i n t e r i o r  of S (because 

it equals  f i n  an open b a l l  about xo, and f is continuous 

a t  x0). The funct ion ? is  a l s o  continuous a t  each point  xl 

of t h e  e x t e r i o r  of S, because it equals  ze ro  on an open b a l l  

about xl. The only points  where can' fail t o  b e  continuous 

are po in t s  of ths boundary of S,  and this set, by assumption, 

has content  zero. Hence f! e x i s t s .  El 
Q 
 1 



-- 

-Note: Adjoining or deleting boundary points of S 


changes the value of f only on a set of content zerol so that 


value of /Js f remains unchanged. Thus )'IS f = /Irnt 
 £1 
 

for instance. 
 

Let us remark on a more general existence theorem than 
 

that stated in Theorem 9. If S is a bounded set, and -


if ~d S has content zero, and if f is continuous on Int S 
 
* 

except on a set D of content zero, then f exists. For 
 -
in this case the discontinuities of the extended function f 


lie in the union of the sets Bd S and D, and this set has 


content zero because both Bd S and D do. 

There are more general existence theorems even than this, 
 

but we shall not consider them. 
 

NOW we note that the basic properties of the double 

integral hold also for this extended integral: 

Theorem 10. Let S be a bounded --- One- - - set in the plane. ­
has the following properties: 

(a) Linearity, 
 

the left side e x i s t s  if the right  s i d e  does. 

(b) Comparison. If f -< g on the  set S t  then 

provided both integrals e x i s t .  



i 
(c) Additivity. Let S = SL U S2. If S1 n S2 has content 

zero, then 

provided the right side exists. 

Proof. (a) Given f, g defined on S, let 2, g equal 

ft gr respectively, on S and equal 0 otherwise. Then 

cl + dg equals cf + dg on S and 0 otherwise. Let Q 

be a rectangle containing S. We know that 

t from this linearity follows. 

(b) Similarly, if < g, then , from which we f -

conclude that 


(c) Let Q be a rectangle containing S. Let fl 

equal f on S1, and equal 0 elsewhere. Let f2 equal f 

on S2, and equal 0 elsewhere. Let f3 equal f on Sf 

and equal 0 elsewhere. Consider the function 



I 
it equals f on the set S1 n S2, and equals zero elsewhere. 

Because Sl n S2 has content zero, l/  f4 exists and equals 
Q 
 

zero. Now 
 

linearity implies that 
 

How can one evaluate iIS f when S is a general 

region? The computation is easy when S is a region of type 

I or I1 and f is continuous on the interior of S: one 

evaluates 1 4  f by iterated integration. This result is 

proved on p,  367 of Apostol. 

using additivity, one can also evaluate llS f for 

many other regions as well. For example, to integrate a 
 

continuous function f over the region S pictured, one can 
 



i 

break it up as indicated into t w o  regions Sl and S2 that 

intersect in a set of content zero. Since S1 is of type I 

and S2 is of type 11, we can compute the integrals I[ f 
s,
A. 

and {I f by iterated integration. We add the results to 
s, 

obtain 
 

Area.
-
We can now construct a rigorous theory of area. We 

already have defined the area of the rectangle Q = [a,b] x [c,d] 

by the equation 


area Q = I..11 
Q 
 

,I We use this same equation for the general definition. 

Definition. L~-tS be a bounded s e t  in  the plane. We say tha t  S 

is Jordan-measurable i f  Sfs 1 exists ;  i n  t h i s  case, we define 

Note that i f  Bd S has content zero, then S is Jordan-measurable, by 

t:y Theorem 9. The converse also holds; the proof is l e f t  a s  an exercise. 

The area function has the following properties: 
 
Jordan-

Theorem 11. - S and be measurable ---Let - T sets in the 
-A 

plane. 
 

(1) (Monotonicity). -If S C T, -then area S < area T. 

(2) (Positivity). Area S 3 0, -and equality holds -if 
-and only if S has-content zero. 



- - - -  - (3) (Additivity) -If S n T is a set of content zero, 

-then S u T ' Jordan-measurable-and 

area(SuT) = area S + area T. 

(4) Area S = Area (Int S) = Area (S u Bd S) . 
Proof. Let Q be a rectangle containing S and T. 

Let 

is(x) = 1 for x E S 

= 0 for x ft S. 

Define FT similarly. 

(1) If S is contained in T, then $(x) C lT(x) . 
Then by the comparison theorem, 

area s = Ifs 1 = 11, L < /I,% = j'b I. = area T. 

(2) Since 0 < 1, we have by the comparison theorem, 

0 = 11, 11, 10. = area s, 

for all S. ~f S has content zero, then $1 1 = $1 is = 0 ,  
S Q 

by Corollary 7. 
 



Conversely, suppose I/ 1 = 0. Then / I  is = 0. 
s Q 
 

Given E > 0, there must be a step function t 2= is defined 
 

on Q such that f /  t < E.  Let P be a partition relative 
Q 
 

to which t is a step function. Now if a subrectangle Qij 

of this partition contains a point of S in its interior, 

then the value of t on this subrectangle must be at least 1. 

~ h u s  these subrectangles have total area less than E .  Now S 

is contained in the union of these subrectangles (of total area 

less than e )  and the partition lines. Thus S has content 

zero. 

(3) Because I!, 1 and $1
T 
1 exist and S n T has 

content zero, it follows from additivity that $1 1 exists 
SUT 

andequals $1 1 + $ $  1. 
S T 
 

(4) Since the part of S not in Int S lies in Bd S, 
 

it has content zero. Then additivity implies that 
 

area S = area(1nt S) + area (S - Int S) 

= area (Int S) . 

A similar remark shows that 
 

area ( S  u Bd SJ = area (Int S )  + area(Bd S) 

= area (Int S )  . 



1 Remark. L e t  S be a  bounded s e t  i n  t h e  plane.  A 

d i r e c t  way of de f in ing  t h e  a rea  of S ,  without developing 

i n t e g r a t i o n  theory,  is  a s  follows: L e t  Q be a  r ec tang le  con­

t a i n i n g  S. 

Given a  p a r t i t i o n  P of Q ,  l e t  a(P) denote t h e  total .  

a r e a  of a l l  subrec tangles  of P t h a t  a r e  contained & S ,  and 

l e t  A(P) denote t h e  t o t a l  a rea  of a l l  subrec tangles  o f  P t h a t  

con ta in  po in t s  of  S. Define the  i n n e r  -a r e a  of S be t h e  supremum 

of the  numbers a (P) , a s  P ranges over  a l l  p a r t i t i o n s  o f  Q; 

and d e f i n e  t h e  o u t e r  -a r e a  of  S t o  be t h e  infemum of t h e  numbers 

A ( P )  . If t he  i n n e r  a r e a  and o u t e r  a r e a  of S a r e  equal ,  t h e i r  

common va lue  i s  c a l l e d  t h e  -a r e a  of S. 

W e  leave it a s  a  ( n o t  too d i f f i c u l t )  e x e r c i s e  t o  show t h a t  

t h i s  d e f i n i t i o n  o f  a r e a  is  t h e  same as the  one we have given. 

Remark. There i s  j u s t  one f a c t  t h a t  remains t o  be proved 

about our  not ion  of a rea .  W e  w o u l d c e r t a i n l y w i s h  it to  be t r u e  

t h a t  i f  two s e t s  S and T i n  t h e  p lane  a r e  "congruent" i n  t h e  sense  

of elementary geometry, then  t h e i r  a r e a s  a r e t h e  same. This  f a c t i s  1 



i 
no t  immediate from the d e f i n i t i o n  of a r e a ,  f o r  we used rec tang les  

with s i d e s  p a r a l l e l  t o  the  coordina te  axes t o  form the  p a r t i t i o n s  

on which we based our  not ion  of " i n t e g r a l " ,  and hence of  "area" .  

~t is  no t  immediate, for i n s t ance ,  t h a t  the  r ec tang les  S and T 

p ic tu red  below have t h e  same a r e a ,  f o r  t h e  a r e a  of T i s  def ined  

by approximating T by r e c t a n g l e s  with v e r t i c a l  and h o r i z o n t a l  

s i d e s .  [Of course,  w e  can w r i t e  equat ions f o r  the  curves bound- 

ing  T and compute i ts  a r e a  by i n t e g r a t i o n ,  i f  w e  wish.]  

Proof o f  t h e  invar i ance  o f  a r e a  under "congruence" w i l l  

have t o  w a i t  u n t i l  we s tudy t h e  problem of  change of v a r i a b l e s  

i n  a double i n t e g r a l .  



Ehercises
I 

1. Show t h a t  i f  ISS 1 ex i s t s ,  then Bd S hz-s content zero. 

[Hint: Chwse Q so  tha t  S CQ.  Since S& IS e x i s t s  , there a r e  functions 

s and t t h a t  a r e  s t e p  functions r e l a t i v e  t o  a pa r t i t i on  P of Q, such 

tha t  s <, Is jt o Q and [$ ( t  - s )  < E . Show t h a t  the  subrectangles 

determined by P tk.at contain points of S hzve t o t a l  volume l e s s  than . ] 

2. ( a )  Let S and T be bounded subsets of R~ . Show t h a t  

Bd (S UT) C (Bd SVBd T ) .  Give an example where equal i ty  does not hold . 
(b) Show tha t  i f  S and T a r e  Jordan-measurable, then so a r e  

SVT 	  and S n T ,  and furthermore 

ar.ea(SbT) = a r e a s  + a r e a T  - area ( S n T ) .  

3. Express in terms o f  iterated integrals the double integral 
 

2 2 x y , where S is the bounded portion of the first 

i 
quadrant lying between the curves x y  = 1 and x y  = 2 and the 

lines y = x and y = 4 x .  ( D o  not evaluate the integrals.) 

4. 	 . A solid is bounded above by the surface z = x 
2 - y 

2 , below 

by the xy-plane, and by the plane x = 2. Make a sketch; 

express its volume as an integral; and find the volume. 

5. Express i n  t e r n  of i t e r a t ed  in tegra l s  the  volume of the  region 

i n  the  f i r s t  a t a n t  of R~ bcunded by: (a) The surfacer  z = xy and 

z = 0 w d  x + 2y + z = 1. (b)  The surfaces  z = xy and z = 0 and 



Let Q denote the rectangle [0,1] x [0,1] in the following exercises. 

@(a) Let f(x,y) = l/(y-x) if x # y, 

f(x,y) = 0 if x = y. 

Does JJQf exist? 

(b) Let g(x,y) = sin (l/(y-x)) if x # y, 

Does JJQg exist? 

@ ~ e t  f(x,y) = 1if x = 112 and y is rational, 
,­

f(x,y) = 0 otherwise 

Show that JJQf exists but J1 f(x,y)dy fails to exist when x = 112. 
0 

@ Let f(x,y) = 1if (x,y) has the form (a/p,b/p), 

where a and b are integers and p is prime, 

f(x,y) = 0 otherwise. 

Show that J J f(x,y)dy dx exists but f does not. 
J J Q  

I 
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GREEN'S THEOREN AND I T S  APPLICATIONS 
 

The d i scuss ion  i n  1 1 . 1 9  - 11.27 of ,  Apostol i s  n o t  complete 

nor  e n t i r e l y  r igorous ,  a s  t h e  author  himself poin ts  out.  W e  

g ive here  a r igorous  treatment.  
n 

Green's Theorem i n  t h e  Plane 

We a l ready know what i s  meant by saying  t h a t  a reg ion  i n  

t h e  p lane  i s  o f  Type I o r  of  Type 11 o r  t h a t  it i s  o f  both 

types  simultaneous l y  . Aposiso1 proves Green 's Theorem f o r  

a reg ion  t h a t  i s  of  both types.  Such a  region  R can be 

descr ibed  i n  two d i f f e r e n t  ways, a s  follows: 

The a u t h o r ' s  proof i s  complete and r igorous  except  f o r  one gap, 

which a r i s e s  from h i s  use of t h e  i n t u i t i v e  no t ion  of "counter­

clockwisen.  
1 



---- - 

S p e c i f i c a l l y ,  what h e  does i s  t h e  fol lowing:  For t h e  f i r s t :  

p a r t  o f  t h e  proof h e  o r i e n t s  t h e  boundary C of  R as fo l lows:  

( * )  	  By i n c r e a s i n g  x ,  on t h e  curve y = @I( x ); 

By i n c r e a s i n g  y ,  on t h e  l i n e  segment x = b; 

By d e c r e a s i n g  x ,  on t h e  curve  y = $ 2  (x ): and 

By d e c r e a s i n g  y ,  on t h e  l i n e  segment x = a .  

Then i n  t h e  second p a r t  o f  t h e  p roo f ,  h e  o r i e n t s  C a s  fol lows:  

( ** )  	  By d e c r e a s i n g  y ,  on t h e  curve  x = q L ( y ) ;  
  

By i n c r e a s i n g  x ,  on t h e  l i n e  segment y = c; 
 

By i n c r e a s i n g  y ,  on t h e  curve  x = I J ~ ( Y ) ;and 
 

By d e c r e a s i n g  x, on t h e  l i n e  segment y = d .  
  

(The l a t t e r  l i n e  segment c o l l a p s e s  t o  a s i n g l e  p o i n t  i n  t h e  pre-  

c e d i  ng f i g u r e . )  

The c r u c i a l  q u e s t i o n  is:  How does  one know t h e s e  two 

o r i e n t a t i o n s  -are -t h e  -sante? 

One can  i n  f a c t  see t h a t  t h e s e  two o r i e n t a t i o n s  a r e  t h e  , 

same, by simply ana lyz ing  a b i t  more c a r e f u l l y  what one means 

by a r eg ion  o f  ~ ~ e~I and 11. s 

S p e c i f i c a l l y ,  such a r e g i o n  can be  d e s c r i b e d  by f o u r  

monotonic f u n c t i o n s  : 



1 

- I / A.. 
 

wt..ere dl and d4 are strictly 

decreasing and X 2  and d3 are 

stzictly increasing, , 

U w *  


[some o r  a l l  o f  t h e  ai  can be missing, of 

course.  Here a r e  p i c t u r e s  of t y p i c a l  such regions:]  

T h e  curves a1 and a2, along wi th  t h e  l i n e  segment y = c, a r e  

used t o  d e f i n e  t h e  curve y = + 1 ( ~ ) t h a t  bounds t h e  region  on 

t h e  bottom. S imi la r ly ,  a3 and a4 and y = d d e f i n e  t h e  curve 

y = C $ ~ ( X )t h a t  bounds t h e  region  on t h e  top. 



Simi la r ly ,  t h e  inver se  funct ions t o  a1 and a3, along with 

x = a ,  combine t o  d e f i n e  t h e  curve x = Ql ( y )  t h a t  bounds t h e  

region  on t h e  l e f t ;  and t h e  inverse  funct ions  t o  ag and a d ,  

a long with x = b, d e f i n e  t h e  curve x = P2 (y). 
NOW one can choose a  d i r e c t i o n  on t h e  bounding curve C by 

simply d i r e c t i n g  each of t h e s e  e i g h t  curves a s  ind ica ted  i n  t h e  

f i g u r e ,  and check t h a t  t h i s  i s  t h e  same a s  t h e  d i r e c t i o n s  

s p e c i f i e d  i n  ( * )  and (**I  . [~ormal ly ,  one d i r e c t s  these  curves 

- a s  follows: 

i n c r e a s i n g  x  = decreas ing  y on y = al (x)  
  

i n c r e a s i n g  x o n y = c  
  

i n c r e a s i n g  x = i n c r e a s i n g  y  on y = a 2 ( x )  
  

i n c r e a s i n g  y o n x = b  
  

decreas ing  x  = i n c r e a s i n g  y  on y  = cr4 (x) 
  

decreas ing  x o n y = d  
  

decreas ing  x  = decreas ing  y on y  = a g ( x )  
  

decreas ing  y  

tJe make t h e  fo l lowing d e f i n i t i o n :  

Def in i t ion .  L e t  R be an open set  i n  t h e  p lane  bounded by 

a s imple  c losed  p iecewise -d i f fe ren t i ab le  curve C. W e  say t h a t  

R i s  a Green's region  i f  it i s  p o s s i b l e  t o  choose a d i r e c t i o n  

on C s o  t h a t  t h e  equat ion  

Pdx + Qdy = [I (2- 51 dxdy 
C 	 R 
 

,i 	 ho lds  f o r  every  cont inuously d i f f e r e n t i a b l e  v e c t o r  f i e l d  

P ( x , y ) r-t + ~ ( x , ~ ) ' jt h a t  i s  de f ined  i n  a n  open set  con ta in ing  

R and C. 



- - -- - - 
--  

I 

, The d i r e c t i o n  on C t h a t  makes t h i s  equat ion c o r r e c t  is  

c a l l e d  t h e  counterclockwise d i r e c t i o n ,  o r  t h e  counterclockwise 

o r i e n t a t i o n ,  of  C. 

I n  t h e s e  terms, Theorem 11.10 o f  Apostul can be r e s t a t e d  

a s  fol lows : 

Theorem 1. -L e t  R -be bounded b~ -a s imple c losed  -oiece-

w i s e - d i f f e r e n t i a b l e  cs rve .  If R is  of Types I and 11, then  R 

i s  a Green's region.  

As t h e  fo l lowing f i g u r e  i l l u s t r a t e s ,  a lmost  any reg ion  R 

you a r e  l i k e l y  t o  draw can be shown t o  be a Green's r eg ion  by 

repea ted  a p p l i c a t i o n  o f  t h i s  theorem. In  such a case ,  t h e  

counterclockwise d i r e c t i o n  on C is  by d e f i n i t i o n  t h e  one for 

which Green's theorem holds.  For example, t h e  region  R i s  a 

Green 's  reg ion ,  and t h e  counterclockwise o r i e n t a t i o n  of  i t s  

boundary C i s  a s  ind ica ted .  The f i g u r e  on t h e  r i g h t  i n d i c a t e s  

t h e  proof t h a t  it is  a Green's region;  each of  R1 and R2 

is o f  Types I and 11. 

Def in i t ion .  L e t  R be a bounded reg ion  i n  t h e  p lane  

whose boundary i s  t h e  union o f  t h e  d i s j o i n t  p iecewise-d i f fer -  

e n t i a b l e  s imple  c losed  curves C1, ..., Cn. We cal l  R a 

g e n e r a l i z e d  Green's r e g i o n  i f  i t  i s  p o s s i b l e  t o  d i r e c t  the 

curves C1, ..., Cn so t h a t  t h e  equa t ion  



ho lds  f o r  every continuously d i f f e r e n t i a b l e  vec to r  f i e l d  

~f + (23 def ined  i n  an  open se t  about R and C. 

Once aga in ,  every such region you a r e  l i k e l y  t o  draw can 

be  shown t o  be a genera l i zed  Greents region by s e v e r a l  app l i -  

c a t i o n s  of  Theorem 1. For example, t h e  region R p i c t u r e d  
generalized 

is aAGreenls reg ion  i f  its boundary i s  d i r e c t e d  as  ind ica ted .  

The proof is i n d i c a t e d  i n  t h e  figure on the r i g h t .  One a p p l i e s  

Theorem 1 t o  each of the 8 regions  p i c tu r ed  and adds the r e s u l t s  

toge ther .  

IXza 
Definition. Let C be a piecewise-differentiable curve in the plane parametrized by 

-	 the function d t )  = (x(t),y(t)). The vector T = (x' (t),y8 (t))/llgt (t) 11 is the unit tangent 

vector to C. The vector 

s = (Y' (t),-x'(t))/llsr'(t)ll 
 

is called the unit negative normal to C. 
 

If C is a simple closed curve oriented counterclockwise, then q is the "outward normal" 
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@ I f f  = P i  + Qj is a continuously differentiable vector field defined in an open 

set containing C, then the integral J, ( 1 - ~ ) d sis well-defined; show that it equals the 

line integral 

@ Show that if C bounds a region R that is a Green7s region, thenqc (f-p)dS = 

ss, [E+ %]dxdy. 

Remark. If f is the velocity of a fluid, then 
5c 

(f-p)dS is the area of fluid flowing 

outward through C in unit time. Thus aP/& + measures the rate of expansion 

of the fluid, per unit area. It is called the divergence off.] 

Definition. Let $ be a scalar field (continuously differentiable) defined on C. If g 

is a point of C, then $'(zc;g) is the directional derivative of $ in the direction of p. It is 
4 

equal to V$(g) -9,of course. Physicists and engineers use the (lousy) notation 2to 

denote this directional derivative. 

@ Let R be a Green's region bounded by C. Let f and g be scalar fields (with 

continuous first and second partials) in an open set about R and C. 

(a) show CQC2ds = J'J v2g dx dy 

R 


where v2g = a2g /h2  + a2g/lly2. 

(b) Show 

(c) If V2f = 0 = V 2g, show 

These equations are important in applied math and classical physics. A function f with 

V2f = 0 is said to be harmonic. Such functions arise in physics: In a region free of 

charge, electrostatic potential is harmonic; for a body in temperature equilibrium, the 

temperature function is harmonic. 



- - -  C ~ n d i t i o n sUnder which P? + Q 4j is a Gradient.  

L e t  -f = P; + p3 be a continuously d i f f e r e n t i a b l e  vector 

f i e l d  defined on an open set S i n  the plane, such that 

aP/ay = 3 4 / a #  on S, In gener t l ,  we knzw t h a t  -f need not be 

a gradient on S, W e  do know t h a t  
(-. 

f w i l l  be a gradient  i f  S 

is convex (or even i f  S i s  star-convex). W e  seek t o  extend 

t h i s  r e s u l t  t o  a more general c l a s s  of  plane sets. 

Th i s  more general  c l a s s  may be informally described as 

cons i s t ing  o f  those  regions i n  the plane t h a t  have no "holesw. 

For example, t h e  region St ins ide  a simple closed curve C1 has 

no h o l e s ,  nor does t h e  region S2 obtained from t h e  plane by 

d e l e t i n g  t h e  non-negative x-axis, On t h e  o t h e r  hand, t h e  

region  S3 c o n s i s t i n g  of t h e  po in t s  i n s i d e  C2 and ou t s ide  

C3 has  a  ho le ,  and s o  does t h e  region  S4 obtained from t h e  

p lane  by d e l e t i n g  t h e  o r i g i n .  

Needless t o  say,  w e  must make t h i s  condi t ion  more p r e c i s e  

i f  w e  a r e  t o  prove a theorem about it. This t a s k  tu rns  o u t  

t o  be s u r p r i s i n g l y  d i f f i c u l t ,  

W e  begin by proving some f a c t s  about t h e  geometry of t h e  

plane. 

1 



Defin i t ion .  A s t a i r s t e p  curve C i n  t h e  p lane  i s  a curve 

t h a t  i s  made up of f i n i t e l y  many h o r i z o n t a l  and v e r t i c a l  l i n e  

segments. 
For such a  cunre C, w e  can choose a  r ec tang le  Q whose 

i n t e r i o r  con ta ins  C. Then by us ing  t h e  coordinates  of  t h e  end 

p o i n t s  of t h e  l i n e  segments of  t h e  curve C a s  p a r t i t i o n  po in t s ,  

w e  can c o n s t r u c t  a p a r t i t i o n  o f  Q such t h a t  C i s  made up 

e n t i r e l y  o f  edges o f  subrec tangles  of  t h i s  p a r t i t i o n .  s his 

process  i s  i l l u s t r a t e d  i n  t h e  fol lowing f igure :  



- - -  - -- 
-- -- -- 

- - - -  - - -  
- -  -- 

i 

Theorem 2.  (The-Jordan curve theorem f o r  s t a i r s t e p  cu rves ) .  -
L e t  C be a simple c losed  s t a i r s t e p  curve i n  t h e  plane. Then the 

complement -of C can be w r i t t e n  a s  t h e  union of two d i s j o i n t  

open sets. One of  t h e s e  sets i s  bounded and t h e  o t h e r  i s  

unbounded. Each of  them has  C a s  its boundary. 

Proof. Choose a r ec tang le  Q whose i n t e r i o r  conta ins  C,  

and a p a r t i t i o n  of  Q, say  xo < x1 < ... c xn and yo c yl c ... < ym, 

such t h a t  C i s  made up of edges of  subrec tangles  of t h i s  p a r t i t i o n .  

Step 1. We begin by marking each of  t h e  rec tangles  i n  

t h e  p a r t i t i o n  + o r  - by t h e  fol lowing r u l e :  

Consider t h e  r e c t a n g l e s  i n  t h e  i-t h  "column" beginning with 

t h e  bottom one. Mark t h e  bottom one with +. I n  general ,  i f  a 

g iven  r e c t a n g l e  i s  marked wi th  + o r  -, mark t h e  one j u s t  above 

it with t h e  -same s i g n  if t h e i r  common edge does n o t- l i e  i n  C ,  

and wi th  t h e  oppos i te  s i g n  i f  t h i s  edge -does l i e  i n  C. Repeat 

t h i s  process  f o r  each column of r ec tang les .  In  t h e  fol lowing 

f i g u r e ,  w e  have marked t h e  r ec tang les  i n  columns 1 ,3 ,  and 6 ,  

t o  i l l u s t r a t e  t h e  process .  

Note t h a t  t h e  r ec tang les  i n  t h e  bottom row a r e  always 

marked +, and s o  a r e  those  i n  t h e  f i r s t  and l a s t  columns, 

(since C does n o t  touch t h e  boundary o f  Q ) .  

1 



-- 
-- -- - - - 

--- 

SteE 2.  W e  prove t h e  following: I f  two subrec tangles  

o f  t h e  p a r t i t i o n  have an edge i n  common, then they have oppos i t e  

s i  no i f  t h a t  edge i s  i n  C, and they have t h e  same s ign  i f  t h a t4-- -- - --- ­
edge i s  n o t  i n  C. 

T h i s  r e s u l t  holds  by cons t ruc t ion  f o r  t h e  h o r i z o n t a l  edges. 

we rove it holds f o r  t h e  v e r t i c a l  edges, by induct ion.  

~t i s  t r u e  f o r  each of t h e  lowest v e r t i c a l  edges, those  

o f  t h e  form xix[yo,yl]. (For no such edge i s  i n  C, and t h e  

bottom r e c t a n g l e s  are a l l  marked +.) Supposing now it is t r u e  

f o r  t h e  r e c t a n g l e s  i n  row j - 1, w e  prove it t r u e  f o r  r e c t a n g l e s  

i n  row j. There a r e  16 cases  t o  cons ider  ( !  ) , of  which we 

i l l u s t r a t e  8: 7 

'-wj 
(1) - j - I  



(The other eight are obtained from these by changing all the signs.) 
 

i We know in each case, by construction, whether the two horizontal edges 

are in C, and we h o w  from the induction hypothesis whether the lower 

vectical edge is in C. Those edges that we how are in C are marked 

heavily in the figure. We seek to determine whether the upper vertical 

edge (marked " ? I 1 )  is in C or not. hTeuse the fact that C is a 

simple closed curve, which implies in particular that 

each v e r t e x  i n  C l i e s  on e x a c t l y  two edges i n  C. I n  c a s e  ( I ) ,  

t h i s  means t h a t  t h e  upper v e r t i c a l  edge i s  n o t  i n  C, f o r  

o the rwise  t h e  middle v e r t e x  would be on only one edge of  C. 

S i m i l a r l y ,  i n  c a s e s  (21, ( 3 1 ,  and ( 4 1 ,  t h e  upper v e r t i c a l  edge 

i s  n o t  i n  C, f o r  o the rwise  t h e  middle v e r t e x  would l i e  on 

t h r e e  edges o f  C. 

S i m i l a r  reasoning  shows t h a t  i n  cases  ( S ) ,  (6), and ( 7 )  
i 

t h e  upper v e r t i c a l  edge must l i e  i n  C, and i t  shows t h a t  

c a s e  (8 )  cannot  'occur.  

Thus S tep  2 i s  proved i n  t h e s e  8 cases .  The o t h e r  8 

a r e  symmetric t o  t h e s e ,  s o  t h e  same proof a p p l i e s .  

S t e p  	3 .  It fo l lows from S tep  2 t h a t  t h e  t o p  row of  

r e c t a n g l e s  i s  marked +, s i n c e  t h e  upper l e f t  and upper r i g h t  

r e c t a n g l e s  a r e  marked +, and C does n o t  touch t h e  boundary of Q. 

S tep  4. W e  d i v i d e  a l l  of  t h e  complement of C i n t o  two 

sets U and V a s  follows. I n t o  U w e  p u t  t h e  i n t e r i o r s  of a l l  

r e c t a n g l e s  marked -, and i n t o  V w e  p u t  t h e  i n t e r i o r s  of  a l l  

r e c t a n g l e s  marked +. W e  a l s o  p u t  i n t o  V a l l  p o i n t s  of  t h e  

p lane  l y i n g  o u t s i d e  and on t h e  boundary of  Q. W e  s t i l l  have 

1 
I 	 t o  dec ide  where t o  p u t  t h e  edges and v e r t i c e s  of t h e  p a r t i t i o n  

t h a t  d o  n o t  l i e  i n  C. 



i 
Consider  f i r s t  an  edge l y i n g  i n t e r i o r  t o  Q. I f  it does  

n o t  l i e  i n  t h e  curve C ,  t hen  both i t s  a d j a c e n t  r e c t a n g l e s  l i e  

i n  U o r  bo th  l i e  i n  V (by S t e p  2 ) ;  p u t  t h i s  (open) edge i n  

U o r  i n  V acca rd ing ly .  F i n a l l y ,  c o n s i d e r  a v e r t e x  v t h a t  l i e s  

i n t e r i o r  t o  9. I f  it is  n o t  on t h e  curve  C, t hen  case  (1) of  

t h e  p reced ing  e i g h t  cases ( o r  t h e  c a s e  w i t h  o p p o s i t e  s i g n s )  

ho lds .  Then a l l  f o u r  o f  t h e .  a d j a c e n t  r e c t a n g l e s  a r e  i n  U o r  

a l l  f o u r  a r e  i n  V; p u t  v i n t o  U o r  V accord ing ly .  

It i s  immediately c l e a r  from t h e  c o n s t r u c t i o n  t h a t  U and V 

a r e  open s e t s ;  any p o i n t  o f  U o r  V (whether it i s  i n t e r i o r  t o  

a s u b r e c t a n g l e ,  o r  on an  edge,  o r  is a v e r t e x )  l ies  i n  an open 

b a l l  con ta ined  e n t i r e l y  i n  U o r  V . I t  i s  a l s o  immediate t h a t  

U i s  bounded and V i s  unbounded, Furthermore,  C i s  t h e  common 

boundary o f  U and V, because  f o r  each  edge l y i n g  i n  C ,  one o f  
) 

t h e  a d j a c e n t - ' r e c t a n g l e s  i s  narlred + and t h e  o t h e r  is  marked -, 
by S t e p  2 .  

~ e f i n i t i o n .  L e t  C be  a s imple  c l o s e d  s t a i r s t e p  curve  i n  

t h e  p lane .  The bounded open s e t  U c o n s t r u c t e d  i n  t h e  p reced ing  

proof  i s  c a l l e d  t h e  i n n e r  r e g i o n  of  C ,  o r  t h e  r e g i o n  i n s i d e  C. 

It is true that U and V are connected, but the proof is dif f icul t .  

We shall  not need t h i s  fact .  

D e f i n i t i o n ,  L e t  S be  an open connected set  i n  t h e  p lane .  

Then S is  c a l l e d  s imply connected,  i f ,  f o r  e v e r y  s imple  c l o s e d  

s t a i r s t e p  cu rve  C which l ies  i n  S,  t h e  i n n e r  r e g i o n  o f  C i s  

also a s u b s e t  o f  S. 



- - -  
Theorem 3 .  - U --	 a s imple c losed  I f  i s  t h e  region  i n s i a e  -

s t a i r s t e p  curve C, then U i s  a Green's region. 

~ r o o f .  Choose a p a r t i t i o n  o f  a r e c t a n g l e  Q enc los ing  U 

such t h a t  C c o n s i s t s  e n t i r e l y  of  edges of  subrec tangles  of  

t h e  p a r t i t i o n .  For  each subrec tangle  Qi j  of t h i s  p a r t i t i o n  

l y i n g  i n  U, i t  is t r u e  t h a t  

i f  Ci i s  t h e  boundary of Q i j ,  t r ave r sed  i n  a c o u n t e r c l o c k ~ i s e  

d i r e c t i o n .  (For  Q i j  i s  a type 1-11 r eg ion) .  Now each edge of 

t h e  p a r t i t i o n  l y i n g  i n  C appears  i n  only one of t h e s e  curves 

C i j ,  and each edge of t h e  p a r t i t i o n  n o t  l y i n g  i n  C appears i n  

) 	 e i t h e r  none o f  t h e  Ci j '  o r  it appears i n  two of  t h e  Ci j  w i th  

opposikely d i r e c t e d  arrows,  a s  ind ica ted :  

I f  w e  sum over a l l  subrec tang les  Qij i n  U,  w e  t h u s  o b t a i n  

t h e  equa t ion  

MA'+Qdy = - 2)d x d ~ e  
I U i n e  segments i n  CI 



- -- 

T h e  on ly  q u e s t i o n  i s  whether t h e  d i r e c t i o n s  w e  have thus  g iven  

t o  t h e  l i n e  segments l y i n g  i n  C combine t o  g i v e  an o r i e n t a t i o n  

o f  C. That t h e y  do  i s  proved by examining t h e  p o s s i b l e  c a s e s .  

Seven o f  them are a s  fo l lows;  t h e  o t h e r  seven  a r e  o p p o s i t e  

t o  them. 
-

These diagrams show t h a t  f o r  each  v e r t e x  v o f  t h e  p a r t i t i o n  

s u c h  t h a t  v i s  on t h e  curve  C ,  v i s  t h e  i n i t i a l  p o i n t  o f  one 

o f  t h e  t w o  l i n e  segments o f  C t ouch ing  i t ,  and t h e  f i n a l  

p o i n t  o f  t h e  o t h e r .  0 

Theorem 4. L e t  S -- s e t  i n  t h e  pla.ne --- be  an open --- such  t h a t  

e v e r y  p a i r  of p o i n t s  - S -- ~ -a s t a i r s t e po f  can be j o i n e d  c u r v e  

-i n  S. -L e t  

be- - t h a t  i s  c o n t i n u o u s l y  d i f f e r e n t i a b l e  i n  S,  
a vector f i e l d  -- ­

such  that 
 

on a l l  of S. (a) If S -is simply connected . then f is a  qradient 

S. (b) f S Ls then f - S.not simply connectad, - - or may not be a qradient in 

1 



- - - -  

Proof. h e  proof of (b) is l e f t  a s  an exercise. We prove ( a )  here. 

Assume that  S is simply conn~cted.  

-St.= 1. WE show t h a t  

Pdx + Qdy = o 

f o r  every  s imple  -c l o s e d  s t a i r s t e p  curve C Lying i n  S. 
. 
 

W e  know t h a t  t h e  r eg ion  U i n s i d e  C i s  a Green's region.-

W e  a l s o  know t h a t  t h e  region  U l i e s  e n t i r e l y  w i t h i n  S. (For 

i f  t h e r e  w e r e  a p o i n t  p o f  U t h a t  i s  no t  i n  S,  then  C 

e n c i r c l e s  a p o i n t  p not  i n  S ,  so t h a t  S has  a h o l e  a t  p. 

his c o n t r a d i c t s  t h e  Eact that S is simply connected.)  There­

f o r e  t h e  equat ion  aQ/ax = aP/ay holds on a l l  o f  ; we t he re ­

f o r e  conclude t h a t  

f o r  some o r i e n t a t i o n  o f  C (and hence f o r  bo th  o r i e n t a t i o n s  o f  

S t e p  2.  W e  show t h a t  i f  

f o r  every  simple c losed  s t a i r s t e p  curve  i n  S, then  t h e  same 

equat ion  holds f o r  s t a i r s t e p  curve  i n  S. 



Assume C c o n s i s t s  of t h e  edges of subrectangles ­

i n  a p a r t i t i o n  o f  some r e c t a n g l e  t h a t  con ta ins  C, a s  usua l .  

W e  proceed by induc t ion  on  t h e  number of v e r t i c e s  on the  

curve  C. Consider t h e  v e r t i c e s  o f  C i n  order :  

Now C cannot  have only  one ve r t ex .  I f  it has  only  two, then  
  

C is a p a t h  going from vo to  v and then  back t o  vo. The l i n e  
  1 

i n t e g r a l  vanishes  

i n  t h i s  case .  

,Now suppose t h e  theorem t r u e  f o r  curves wi th  fewer than  n 

v e r t i c e s .  L e t  C have n v e r t i c e s .  If  C i s  a s imple curve ,  we 

a r e  through. Otherwise,  l e t  vk be t h e  first v e r t e x  i n  t h i s  

sequence t h a t  equa l s  some earlier v e r t e x  vi f o r  i < k. We 

cannot  have vk -- vkWl, f o r  then vkmlvk would n o t  be a l i n e  

segment. 

It Vk = Vk-2' then  t h e  curve con ta ins  t h e  l i n e  segment 

Vk-2vk-1' fol lowed by t h e  s a m e  l i n e  segment i n  r e v e r s e  order .  

Then t h e  i n t e g r a l  from v ~ - ~to vkWland t h e  i n t e g r a l  from 



vk-1 t o  vk a r e  nega t ives  of each o the r .  W e  can d e l e t e  vk-l 

from t h e  sequence of  v e r t i c e s  wi thout  changing t h e  va lue  of 

t h e  i n t e g r a l .  We have a c losed  curve remaining with fewer 

l i n e  segments than  be fo re ,  and t h e  induc t ion  hypothesis  

a p p l i e s .  

I f  i C k-2, then  w e  can cons ide r  t h e  c losed  curve wi th  

v e r t i c e s  vi, V ~ + ~ , . . . , V  This is  a s imple c losed  curve,  s i n c e
k' 
 

a l l  i t s  v e r t i c e s  a r e  d i s t i n c t ,  so t h e  i n t e g r a l  around it i s  

zero ,  by S t e p  1. Therefore  t h e  va lue  o f  t h e  i n t e g r a l  

/C Pdx + Qdy is  n o t  changed i f  we d e l e t e  t h i s  p a r t  of C,  i .e., 

i f  w e  .d e l e t e  t h e  v e r t i c e s  vi,. .,vk-1 from t h e  sequence. Then 

t h e  i n d u c t i o n  hypothes is  a p p l i e s .  

Example. In t h e  fo l lowing  case, 



I 

t h e  f i r s t  v e r t e x  a t  which t h e  curve touches a v e r t e x  a l r e a d y  

touched is t h e  p o i n t  q. One cons iders  t h e  s imple c losed  cross­

hatched curve,  t h e  i n t e g r a l  around which i s  zero.  ~ e l e t i n gthis 

curve ,  one has  a curve remaining c o n s i s t i n g  of  fewer l i n e  seg- 

ments. You can cont inue  t h e  process  u n t i l  you have a s imple  

c l o s e d  curve remaining. 

S tep  3 .  W e  show t h a t  i f  C1 and C2 a r e  any two s t a i r s t e p  

curves  i n  S from p t o  q, then  

IC1Pdx + Qdy = JC2 Pdx + Qdy. 

his fol lows by t h e  usua l  argument. I f  -C2 denotes  C2 wi th  

t h e  r eve r sed  d i r e c t i o n ,  t h e n  C = C1 + (-C2) i n  a c losed  s t a i r s t e p  

curve.  W e  have 

Th i s  last i n t e g r a l  vanishes ,  by S tep  2. 

S tep  4. Now w e  prove t h e  theorem. L e t  -a be a f i x e d  

p o i n t  o f  S ,  and d e f i n e  

$ (x)= J'c (g Pdx + Qdy. 

where C ( x )- is any s t a i r s t e p  curve  i n  S from -a t o  -x. There 

always exis ts  such  a s t a i r s t e p  curve (by hypo thes i s )  , and t h e  

v a l u e  o f  t h e  l i n e  i n t e g r a l  i s  independent of t h e  choice  of 

t h e  curve  (by S t e p  3). It remains t o  show t h a t  

j a$/ax = P and = Q. 



We proved t h i s  once be fo re  under t h e  assumption t h a t  C (5 )  was 

an a r b i t r a r y  piecewise smooth curve. B u t  t h e  proof works j u s t  a sI 

w e l l  i f  we r e q u i r e  C ( 5 )  t o  be a s t a i r s t e p  curve.  To compute 

w e  f i r s t  computed W e  computed 

choosing a curve  from and i n t e ­

g r a t e d  along Cl. W e  computed $(x+h,y)  by choosing t h i s  same 

curve  p l u s  t h e  s t r a i g h t  l i n e  from 

t h e  p r e s e n t  case ,  we have requ i red  t o  be a s t a i r s t e p  curve.  

Then we no te  t h a t  -	C1 & 2 s t a i r s t e p  curve + C2 is a l s oi f  	 C1' 	 -­
-a s t a i r s t e p  curve.  Therefore t h e  e a r l i e r  proof goes through with- 

o u t  change. 

Remark. I t  i s  a f a c t  t h a t  i f  two p a i r  o f  p o i n t s  o f  S can 

b e  joined by some path  i n  S, then  they  can be joined by a stair-

s t e p  path .  ( W e  s h a l l  n o t  bother  t o  prove t h i s  f a c t . )  I t  fo l lows 

i 	 t h a t  t h e  hypothes is  o f  t h e  preceding theorem i s  merely t h a t  S be 

connected and s imply connected, 

Exercises 

I. Let S 5e the punctured plane, i.?., the plane with the 

orizin deleted. Show that ths vector fields 

satisfy the condition b?/Jy = a a/ax. 
(a) Show that -f is a gradient in S. [Hint:- F i r s t  find ~(3 so that 

~ a / ) x= x/(x
2 

c y 
2 

) .] (b) Show that q is not a gradient in S. [Hint:­
Compute f 9- dd- where C i s  the unit circle centered a t  the origin.] 



-- - --  

-- - 

2. Prove the following: 
 

'Rreorem 5. Let C1 be a simple closed stairstep curve in the plane. 
 -
Let b~ a simple closed stairstep curve that is contained in the inner 
 

C2 

region of C1. Show that the region consisting of those points that are in 

the inner region of C1 and are not on C2 nor in the inner region of C­
L 

is a generalized Green's region, bounded by C1 ard C2 . 
 
[Hint: Follow the pattgrn of the proof of Theorem 3.1 
 

3. Let q be the vector field of Exercise 1. Let C be any simple 

closed stairstep w  e  whose inner region contains Q. Show that 

JC f*dl # 0. [Hint:- Show this inequality 'holds if C is the boundary 

oE a rectangle. Then apply Theorem 5.] 

* 4 .  Even i f  t h e  r e g i o n  S i s  not simply connected,  one can 

u s u a l l y  de te rmine  whether a  g iven  v e c t o r  f i e l d  e q u a l s  a g r a d i e n t  

i f i e l d  i n  S. Here i s  one example, where t h e  r e g i o n  S i s  t h e  

punctured p l ane ,  - . 
Theorem 6.  Suppose -t h a t  -f = P i- + Qj- -is  con t inuous ly  

d i f f e r e n t i a b l e  and-

i n  t h e  punctured p lane .  L e t  R be  a f i x e d  r e c t a n g l e  e n c l o s i n g  

-t h e  o r i g i n ;  o r i e n t  Bd R -counte rc lockwise ;  -l e t  

A = \  	  P d x + Q d y .  
Bd R 

( a )  -I f  C is any s imp le  c l o s e d  s t a i r s t e p  cu rve  n o t  touch- 

-t h e  o r i g i n ,  -t hen  

e i t h e r  e q u a l s  5 A ( i f  t h e  o r i g i n  i s  i n  t h e  i n n e r  r e g i o n  o f  C) 

O]r 0 ( o t h e r w i s e ) .  
I 



- - - -- 

- - --  

(b) I f  A = 0, t hen  f equa l s  a g r a d i e n t  f i e l d  i n  t h e  

punctured p lane .  [Hint :  I m i t a t e  t h e  proof o f  Theorem 4 .  I 

(c) -I f  A # 0, t h e n  f d i f f e r s  from a g r a d i e n t  f i e l d  

-a c o n s t a n t  m u l t i p l e  --of the v e c t o r  f i e l d  

That is,  t h e r e  is  a c o n s t a n t  c such t h a t  -f + c q  e q u a l s  a 

g r a d i e n t  f i e l d  i n  t h e  punctured p l ane .  ( Indeed ,  c = -~/2n.) 



S u b t r a c t i n g ,  w e  o b t a i n  

aQ (ax au ax a Y- - - - - -) = ­3x au av av au ax J(u,v) , 

is evaluated a t  Since 2 Q/& = f we have our desired result : 

One can weaken t h e  hypo thes i s  o f  t h i s  theorem a  b i t  i f  one 

wishes .  S p e c i f i c a l l y ,  it i s  n o t  necessary  t h a t  t h e  f u n c t i o n  

f ( X I Y )  which i s  be ing  i n t e g r a t e d  be  cont inuous  i n  an e n t i r e  rec -  

t a n g l e  c o n t a i n i n g  t h e  r e g i o n  o f  i n t e g r a t i o n  S .  I t  w i l l  s u f f i c e  

i f  f ( x , y )  i s  merely cont inuous  on  some open set  c o n t a i n i n g  S 

and C. For it is a s t a n d a r d  theorem ( n o t  too- d i f f i c u l t  to  prove)  

t h a t  i n  t h i s  c a s e  one can  f i n d  a f u n c t i o n  g t h a t  is con t inuous  

i n  t h e  e n t i r e  p l a n e  and e q u a l s  f on S and C. One t h e n  a p p l i e s  

t h e  theorem t o  t h e  f u n c t i o n  g. 
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I,b 
 aY aY
Q 1 i av 2 (t)) dtt + -61 = 

where the partials are emluated at P_(t). We can write this last integral 
 

as a fine integral over the curve D. Indeed, if we define 
 

then this last integral can be written as 
 

NOW we apply Green's theorem to express this line integral as a 
 

double integral. Since T is by hypothesis a Green's region, 
 

this line integral equals 
 

It remains to compute these partials, using the chain rule. We 
 

have 



- - 
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proof. Let R =  [c ,d l  x [c',dtl. Define 
X 
 

Q(x,y) = f(t,y)dt for (x,y) in R e  Then aQ/ax = f(x,y) 
C 

on all of R, because f is continuous. We prove our theorem 
 

by applying Green's theorem. Let (u,v) = @(t) be a-
parametrization of the curve D, for a < t < b; choose the 

counterclockwise direction, so Green's theorem holds for T. 
 

Then -a(t) = ~(fi(t)) is a parametrization of the 

curve C. It may be constant on some Subintervals of the t- . 

axis, but that doesn't matter when we compute line integrals. 
 

Also, it may be countsrclock~~ise 
dr clockwise. 
 

We apply Green's theorem to S : 

+ + 
t ­I\ f (x,y)dx dy = \ \  aa/ax ax ay = (01+ Qj)ads.

S S 

This sign is + if -a(t) parametrizes C in the counterclock- 


wise direction, and - otherwise. Now let us compute this line 


integral, 
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-R e  chanqe of variables theorem 
 

Dieorem 7. (The chanqe of variables theorem) 
 

i -	 -- be an own set Let S be an open set in the (x.y) plane and let T -­
-- the piecewise-diffe&tiable simile closed -curvesin the (u, v) plane I houndfd 

C D ,respectively. Let F(u,v) = (X(u.v). Y(u.v)) a transformation-
(co*ti*uercrly di&ferenf ia  bLs\ 
from an open set of (u,v) plane into the (x,y) plane that carries 
 T into 

Sf -and carries D = a T -onto C = 2 S. -As -a transformation of D onto C , 
4.10 b_e 

F may k constant on some segments of D, but otherwise if one-to-one. 

Assume S -and T are Green's reqions. Assume that f(x,y) & continuous 

in some rectanqle R containing S. Then 

-Here J(u,v) = det JX,Y/~U~V . -- + if F carriesThe siqn ­
clockwise orientation of D to the clockwise orientation of C, and is ­
ctherwise. 

r b&le 1. Consider the polar coordinate transformation 

1I 
F(rIQ) = (r cos 8 ,  r sin 8) . 

It carries the rectangle T in the (r,Q) plane indicated in the figure into 

1
I 	
the wedge S in the (xIy) plane. It is constant on the left edge of Tt 

but . is one-to-one on the rest of T. Note that it canies the counterclockwise 

I 	orientation of D = JT to the counterclockwise orientation of C = 3 S .  



- -- 
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I 

An a l t e r n a t e  vers ion  o f  t h e  change of v a r i a b l e s  theorem i s  

t h e  following: 

Theorem 8 .  Assume a l l  t he  hypotheses o f  t h e  preceding 

theorem. Assume a l s o  t h a t  J ( u , v )  does n o t  change s ign  on  t h e  

region T.  

I f  J ( u , v )  > 0 on a l l  of T, t h e  s i g n  i n  t h e  change -o f  

v a r i a b l e s  formula i s  +; while  i f  J ( u , v )  C 0 on a l l  of  T, t h e  

s i g n  -is - Therefore i n  e i t h e r  c a s e  - - f  

Proof. We apply t h e  preceding theorem t o  t h e  func t ion  

f ( x , y )  z 1. We o b t a i n  t h e  formula 

11 dx dy = t I\ J ( u , v )  du dv. 

The l e f t  s i d e  of t h i s  equat ion  is posi t . ive.  heref fore i f  

J ( u , v )  0 on a l l  o f  T, t h e  s i g n  on t h e  r i g h t  s i d e  of t h e  

formula must be +; while  i f  J ( u , v )  C 0 on a l l  o f  T, t h e  

s i g n  must be - Now we r e c a l l  t h a t  t h e  s i g n  does n o t  depend on 

t h e  p a r t i c u l a r  func t ion  being i n t e g r a t e d ,  only  on t h e  transforma- 

t i o n  involved. Then t h e  theorem i s  proved. 0 



Remark. The formula we have j u s t  proved g ives  a geometric 
! 

i n t e r p r e t a t i o n  of t h e  Jacobian determinant of a t ransformat ion .  

~f  J ( u , v )  # 0 a t  a  p a r t i c u l a r  po in t  ( u O , v O ) ,  l e t  us choose a  

small  r e c t a n g l e  T about  t h i s  po in t ,  and consider  i ts  image S 

under the  t ransformat ion .  I f  T is smal l  enough, J ( u , v )  w i l l  

be very  c l o s e  t o  J ( u o , v o )  on T, and s o  w i l l  no t  change s ign .  

Assuming S i s  a Green's region,  w e  have 

a r e a  s = / /  dx d y  = \I I J ( u , v ) ~  du dvt so  

a r e a  S - I J ( U ~ , V ~ )  I ( a r e a  T ) .  

Thus, roughly speaking, t h e  magnitude of  J ( u , v )  measures how 

much t h e  t ransformat ion  s t r e t c h e s  o r  s h r i n k s  a r e a s  a s  it c a r r i e s  

a p i e c e  of t h e  u ,  v p lane  t o  a p iece  o f  t h e  x, y plane.  And 

t h e  s i g n  o f  J ( u , v )  t e l l s  whether t h e  t ransformat ion  p rese rves  

o r i e n t a t i o n  o r  not;  i f  t h e  s i g n  i s  negat ive ,  then  t h e  transforma- 

t i o n  " f l i p s  o v e r n  t h e  r eg ion  T b e f o r e  sh r ink ing  o r  s t r e t c h i n g  it 

t o  f i t  on to  S. 



- - 

-- 
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AS a n  a p p l i c a t i o n  o f  t h e  change o f  v a r i a b l e s  theorem, w e  

s h a l l  v e r i f y  t h e  f i n a l  p r o p e r t y  o f  o u r  n o t i o n  o f  a r e a ,  namely, 

t h e  f a c t  t h a t  c o n g r u e n t  r e g i o n s  i n  t h e  p l a n e  have  t h e  same a r e a .  

F i r s t ,  w e  must  make p r e c i s e  what w e  mean by a "congruence ."  

~ e f i n i t i o n .  A t r a n s f o r m a t i o n  h : R 2 -> R~ o f  t h e  p l a n e  
or an isomet 

t o  i t s e l f  i s  c a l l e d  a congruence  &preserves  d i s t a n c e s  between 
A 

p o i n t s .  Tha t  is ,  -h is a congruence  i f  

fo r  e v e r y  p a i r  a ,  b o f  p o i n t s  i n  t h e  p l a n e .  

The f o l l o w i n g  is a p u r e l y  g e o m e t r i c  r e s u l t :  

Lemma 9. If h : R~ -> R is a congruence ,  t h e n  h h a s- - 2 - - - -
t h e  form 

-or, writing vectors as column matrices, 

where (a ,c)  and (b,d) are uni t  orthogonal vectors. -It follows that ­
ad - M,-the Jacobian determinant of 

4
h, ec;uals +I. 

-P r o o f .  L e t  (p ,q)  d e n o t e  the p o i n t  & ( O , O )  . Def ine  

2 -k : R -> p2 by t h e  e q u a t i o n  

I t  is e a s y  to  check  that -k is a congruence ,  s i n c e  



- - - 

i 
f o r  every p a i r  o f  po in t s  2, b.  L e t  u s  

which has t h e  proper ty  t h a t  &(g)= 0. 

study t h e  congruence k ,  
-

We f i r s t  show t h a t  -k preserves norms of  vec tors :  By 

hypothes is ,  

Ilall- = Ilk(a)- OII = llk(a)ll. 

Second, we show t h a t  k preserves  d o t  products:  By hypothesis ,  -

Ilk(=)II2 -2k(a)-&(b)+ llk(b)l12- 1la1l2 - - + llbl12.- = - 2a.b- ­

Because -k preserves  norms, w e  must have 

W e  now show t h a t  -k is a l i n e a r  t ransformation.  L e t  gl 

and g2 be the usual  u n i t  b a s i s  v e c t o r s  f o r  R2 
; then (x,y) = 

xg1 + yeZ ~ e t  

e = k ( e )  and e+ = k ( e ) .-3 - -1 - -2 

Then e3 and e+ a r e  a l s o  u n i t  or thogonal  v e c t o r s ,  s i n c e  -k 

1 prese rves  d o t  products  and norms. Given -x = (x,y), cons ider  



i 
t h e  vec tor  k (?I) ; because e3 and g4 form a b a s i s  f o r  R 2 ,-
we have 

f o r  some s c a l a r s  a and 6, which a r e  of  course funct ions  of x.-
L e t  us compute a and B .  We have 

because i s  or thogonal  
  

by d e f i n i t i o n  o f  e3, 
 

because k preserves  d o t  products ,  
  -

because 3 i s  orthogonal  t o  e2. 

S i m i l a r l y ,  

P(?i) = -k ( 2 )  = -k ( x )- *k(g2)= 5 e2 = y. 

W e  conclude that f o r  a l l  p o i n t s  5 =  ( x , ~ )  of R2, 

L e t t i n g  ej = ( a , c )  and 3 = (b,d)  , w e  can  w r i t e  k o u t  in ,  

components i n  the form 

-k ( 5 )  = x(a8c)  + y ( b , d )  = ( a x  + by, c x  + d y ) .  



- --  -- -- 

Thus -k is a l i n e a r  t rans format ion .  

Returning now to  ou r  o r i g i n a l  t rans format ion ,  -h ,  w e  recal l  

t h a t  

-k ( 5 )  = -h ( x )- - ( p t q ) .  

Therefore  w e  can w r i t e  o u t  h ( 5 )  i n  components a s-

-h ( ~ )= ( a x  + by + p,  cx  + dy + q ) .  

TO compute t h e  J acob ian  de t e rminan t  o f  h,  w e  no t e  t h a t  because  -
-3e = (a,c) and = (b ,d)  are u n i t  o r thogona l  v e c t o r s ,  w e  have 

t h e  equa t ion  

d e t  a b de t  1 0c j =  [ , j t O r  

-
Theorem 1 0 .  L e t  h b e  a congruence of the p l a n e  t o  it­

s e l f ,  c a r r y i n g  r e g i o n  S.. -to r e g i o n  7. -If  b o t h  S -and T -are 

Green 's r e g i o n s ,  -t h e n  

area S = area T. 

i 



I 

P roof .  The t r ans fo rma t ion  carries the  boundary o f  T i n  

a one-to-one f a s h i o n  o n t o  t h e  boundary o f  S ( s i n c e  d i s t i n c t  

p o i n t s  of R' a r e  c a r r i e d  by h- t o  d i s t i n c t  p o i n t s  o f  R 2 ) .  

~ h u s  t h e  hypotheses  o f  t h e  preced ing  theorem a r e  s a t i s f i e d .  

Furthermore,  I J (u ,v )  I = 1. From t h e  equa t ion  

w e  conclude t h a t  

area S = a r e a  T. 0 

EXERCISES. 

1. L e t  -h (x) = A be an  a r b i t r a r y  l i n e a r  t r a n s f o r m a t i o n  - -x 
o f  R~ t o  i tself .  I f  S i s  a r e c t a n g l e  o f  a r e a  M, what i s  t h e  

a r e a  o f  t h e  image o f  S under t h e  t r a n s f o r m a t i o n  h?­
2.  Given t h e  t r a n s f o r m a t i o n  

\. (a)  Show t h a t  i f  (a,c) and ( b e d )  are u n i t  o r thogona l  

v e c t o r s ,  then -h is a congruence.  

(b) I f  ad - b c  = 21, show -h p r e s e r v e s  areas. Is h-
n e c e s s a r i l y  a congruence? 

3 .  A t r a n s l a t i o n  o f  R~ is a t r a n s f o r m a t i o n  o f  t h e  form 



i 

where g is  f ixed .  A r o t a t i o n  of R~ i s  a t ransformation of 
;I 

t he  form 

-h ( 2 )  = (x cos 4 - y s i n  0 ,  x s i n  4 + y cos $ 1 ,  

where is  f ixed .  

( a )  Check t h a t  the  t ransformat ion  h c a r r i e s  the  p o i n t  -
with po la r  coordina tes  ( r , 9 )  t o  t h e  p o i n t  wi th  po la r  coordina tes  

( r ,9+$) 

(b) Show t h a t  t r a n s l a t i o n s  and r o t a t i o n s  a r e  

congruences. Conversely, show t h a t  every congruence wi th  Jacobian 

+I can be w r i t t e n  a s  t h e  composite of  a t r a n s l a t i o n  and a r o t a ­

t i o n .  

( c )  Show t h a t  every congruence with Jacobian -1 can be 

w r i t t e n  a s  t h e  composite of  a t r a n s l a t i o n ,  a r o t a t i o n ,  and t h e  

r e f l e c t i o n  map 

4 .  L e t  A be a square  matr ix .  Show t h a t  i f  t h e  rows of 

A a r e  orthonormal vec to r s ,  then  t h e  columns of A a r e  a l s o  

orthonormal vec to r s .  



i 

r 
 
3. Let S b e  the act of all ( x , ~ )  with b2x2 + a2Y2 I .  

Given f(x, y )  , expresa the integral JJ f as an integral over 
S 

2 . *.the 	unit disc u2 + v 2  1. Bvaluate when f(x,y) = x , - . 

6. 	 Let C be a circular cylinder of radiua a whome central axis 

is the x-axis. Let D be a circular cylinder of radius b 5 a 

whose central axir is the z-axia. Bxpresa the volume conmoa to the 

two cylinders am an integral in cylindrical coordinates. L ~ v a l u a t e  

when b = a - w . 1  
7 
I. 	 Transform the integral in problem 3, p .  0.26 by using the substi­

tution x = u / v ,  y = uv with u, v > 0 .  Evaluate the integral. 





StokesI Theorem 

in common use (yet) 

Our text states and proves Stokes' Theorem in 

in physics and engineering. + 12.11, but ituses the scalar form for writing both the line integral and the surface integral 
 

involved. In the applications, it is the vector form of the theorem that is 
 

most likely to be quoted, since the notations dxAdy =d the like are not 
 

Therefore we state and prove the vector form of the theorem here. 
 

The proof is the same as in our text, but not as condensed. 
 

--.I 

Definition. Let F = PT + QT + $ be a continuously differentiable , 

vector field defined in an open set U of R3 . We define another vector . 

field in U, by the equation 

curla = ()R/ay - a d z )  
+ 
i + (JP/>Z- aR/Jx) 7 + (>Q/& -ap/Jy) 7 .  

We discuss later the physical meaning of this vector field. 
 

An easy way to remember this definition is to introduce the symbolic 
 

operator "delM, defined by the equation 
 

* 
md to note that curl F can be evaluated by computing the symbolic determinant 

7' 7 

-9 + 
curl? = V ~ F= det 

Theorem. (Stokes1 theorem). Let S be a simple smooth parametrized 

surface in R ,  parametrized by a function g : T S , where T is a 
region in the (u,v) plane. Assume that T is a Green's region, bounded 

by a simple closed piecewise-smooth curve D, and that has continuous 



second-order partial deri~tivesin an open set containing T ard D. 

Let C be the curve L(D). 

If F is a continuously differentiable vector field defined in 

an open set of R~ containing S and C, then 

J --t 
( F a  T) ds -- JJs ((curl T)-$] d~ . 

Jc 

Here the orientation of C is that derived from the counterclockwise 

orientation of D; and the normal fi to the surface S points in the same 

direction as 3rJu Y 1gJv . 

Remark 1. The relation between 
4 
T and 2 is often described 

informally as follows: "If youralkaround C in the direction specified by 

3 with your head in the direction specified by i? , then the surface S 

is on your left." The figure indicates the correctness of this informal 

description. 
/ 

Remark 2. We note that the equation is consistent with a change 
 

of parametrization. Suppose that we reparametrize S by taking a function 
 

9 : W -s T carrying a region in the (s,t) plane onto T, and use the 

new parametrization R(s,t) = g(q(s,t)) . What happens to the integrals
/ 



in the statement of the th?orem? If det Dg .0 , then the left side of 

the equation is unchanged, for we know that g carries the countercloclcwise 
 

orientation of 2~ to the counterclockwise orientation of 2 T. Furthermore, 

because )-R /as x&/J t = ( J dx 3rJk) det Dg , the unit normal 

determined by the parametrization g is the same as that determined by g , 

so the right side of the equation is also unchanged. 
 

Orr the other hand, if det D g i  0, then the counterclockwise orientation 

of J W  goes to the opposite direction on C, so that 7 changes 

sign. But in that case, the unit normal determined by g is opposite to 

that determined by r. Thus both sides of the equation change sign. 

--- The proof consists of verifying the 
 Proof of the theorem. 


following three equations: 
 

m e  theorem follo& by adding these equations together. 
 

We shall in fact verify only the first equation. The others are 
 

proved similarly. Alternatively, if one makes the substitutions 
 
> 4 -+ 3 -4 
1 j and j +k m.d k -+i md x--sy and y + z  and z - e x ,  

then each equation is transformed into the next one. This corresponds to 

ar? orientation-presedng chmge of ~riables in R3 , so it leaves the 

orientations of C and S unchanged. 
-3 

Sa let F henceforth denote the vector field Pi ; we prove Stokes' 

theorem in that case. 



The idea of the proof is to express the line and surface integrals 
 

of the theorem as integrals over D and TI respectively, and then to 
 

apply Green's theorem to show they are equal. 
 

Let r(uIv) = (X(U.V)~ Y(u,v), Z(u,v)), as usual. 
 

Choose a counterclockwise parametrization of D ; call it 
 

l(t) . for a 5 t < b. Then the function 
 
4 

is the parametrization of C that we need to compute the line integral 
 

of our theorem. k 
 

a 
 

We compute as follows: 
 

where 2 U u  and aX&v are evaluated at d_(t), of course. We can write 

this as a line integral over D. Indeed, if we let p and q be the functions 

a x
p(uIv) = P(g(uIv) )*ru(ufv) 

a x
s(u,v) = P(g(u,v) 1 8 --$urv)d I 

then our integral is just the line integral 
 

New by Green's theorem, this line integral equals 
 



I * )  (J~/JU - J, /~v) du dv . 
 

We use the chain rule to compute the integrand. We have 
 

where P and its partials are evaluated at ~(u,v), of course. 

Subtracting, we see that the first and last terms cancel each other. 

The double integral (*)  then takes the form 

Nclw we compute the surfac~ integral of our theorem. Since 

curl 
3 
F = 2 , formula (12.20) on p. 435 of our text > P / ~ ZT->P/>~ 

tells us we have 
 

Here 2P/>z and 2 P/3y are e~luated a t  -r(u,v), of course. 
, 

Our theorem is thus proved. 
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Exercises on tfie diverqence theorem 
 

1. 	 Let S be the portion of the surface z = 9 - x2 - y2 lying 
 

above the xy plane. Let 8 be the unit upward normal to S. 
 

Apply the divergence theorem'to the solid bounded by S and the 

xy-plane to evaluate il d ~  if:J'I P 
S 

(a) 1 = ~ i n ( ~ + z ) ?+ s X Z J  + ( x
2 
+y 

2 ) d .  

(b) D = y2z3 + yf + zR. 
 
Anewers: (a) 8 1 ~ / 2 *  (b) 8ln. 
 

2 .  	  Let S1 denote the surface z = 1 - x 2 - Y2 ; z 2 0. Let 

S2 denote the unit d i s c  x 2  + y 2 1 z = 0 Let = x t  ­
(2wcy)f + zk; let 3, be the unit normal to S, and let 3, be 

the unit normal to S 2 ,  both with positive d component. Evaluate 

y o d l d S  and Jj 1 * a 2 d s .  
  

S1 s2 
 



- - -  

i 

-'Grad 'Curl Div and all that. 

We study two questions about these operations: 
 

I. DO they have natural (i.e., coordinate-free) physical 
 

or geometric interpretations? 
 

11. What is the relation between them? 
 

I. We already have a natural interpretation of the 
 

gradient. 
 

For divergence. the question is answered in 12.20 of -

Apostol. The theorem of that section gives a coordinate-free 
-+ 

definition of divergence F. and the subsequent discussion 
 
1 

+ 
gives a physical interpretation, in the case where F is the 
 

flux density vector of a moving fluid. 
 

Apostol treats curl rather more briefly. Formula 
 

(12.62) on p. 461 gives a coordinate-free expression for 
 
+ -L 

r i - curl F(a) as follows:- , 

where C(r) is the circle of radius r centered at -a 
lying in the plane perpendicular to and passing through 

the point a, and C(r) is directed in a counterclockwise 



I 

+
direction when viewed from the tip of n. This number is 
 

! +
called the circulation -of 5 -at -a around -the vector n; 

it is clearly independent of coordinates. Then one has a 
 
-b 

coordinate-free definition of curl F as follows: 
 

+ 
curl F at a points in the direction of the vector 
 -

+ 
around which the circulation of F is 
 

a maximum, and its magnitude equals 
 

this maximum circulation. 
 

YOU will note a strong analogy here with the relation between 
 

the gradient and the directional derivative. 
 
,

-+ 
For a physical interpretation of curl F, let us 
 

+ 
imagine F to be the velocity vector field of a moving fluid. 
 

Let us place a small paddle wheel of radius P in the fluid, 
 

-+
with its axis along n. Eventually, the paddle wheel settles 
 

down to rotating steadily with angular speed w (considered as 
 

positive if counterclockwise as biewed from the tip of if). 
 
+ + 

The tangential component F*T of velocity will tend to in- 
 

crease the speed w if it is positive and to decrease o if 
 



1 
it is negative.  On phys ica l  grounds, it i s  reasonable t o  

suppose t h a t  

+ -b
average value of ( F - T )  = 	- , speed of a p o i n t  

on one of t h e  paddles 

That is, 

+ +& I C ~T d s  = r w .  

I t  fo l lows t h a t  

s o  t h a t  by formula w e  have ( i f  is  very s m a l l )  , 

+d c u r l  F ( a )  = 2w.-

+ 
I n  phys ica l  terms then,  t h e  vec to r  k u r l  F(=)] p o i n t s  i n  t h e  

d i r e c t i o n  of t h e  a x i s  around which our  paddle wheel s p i n s  

most r a p i d l y  (in a counterclockwise d i r e c t i o n ) ,  and i ts magni­

tude  equa l s  t w i c e  this maximum angular  speed. 



, 11. What a r e  t h e  r e l a t i o n s  between t h e  opera t ions  

grad, c u r l ,  and d iv?  Here is one way of expla in ing  them. 

-Grad goes from s c a l a r  f i e l d s  t o  vec tor  f i e l d s ,  -Curl 

goes from vec to r  f i e l d s  t o  vec tor  f i e l d s ,  and -Div goes from 

vec to r  f i e l d s  t o  s c a l a r  f i e l d s .  his i s  s u m a r i z e d  i n  t h e  

diagram: 

S c a l a r  f i e l d s  0 (5)  

Vector f i e l d s  

Vector f i e l d s  

c u r l  

(,Ia 

1 
S c a l a r  f i e l d s  Jl (XI-

L e t  us cons ider  f i r s t  t h e  t o p  two opera t ions ,  grad and 

c u r l .  W e  r e s t r i c t  ou r se lves  t o  s c a l a r  and vec to r  f i e l d s  t h a t  

3a r e  cont inuous ly  d i f f e r e n t i a b l e  on a region  U of R . 
Here is a theorem w e  have a l r e a d y  proved: 

+
Theorem 1. F i s  a g r a d i e n t  -i n  U i f  and only -i f  

r -L 

F *  du- = 0 -f o r  eve ry  c losed  piecewise-smooth pa th  -i n  U. 
+ + 

-Theorem 2. If F = grad 4 f o r  some 4 ,  then  c u r l  F = 

~ r o o f .  W e  compute c u r l  3 by t h e  formula 

- -  -- 

-- 
+ 
0 .  

c u r l  



- ---  
- -- 

--- 

--- - - -  - 

w e  know t h a t  i f  $ i s  a g rad ien t ,  and t h e  p a r t i a l s  of  F a r e  

continuous,  then  D . F  = D . F  f o r  all i, j. Hence 
1 j 	 J i 

-!- +
c u r l F = O .  

Theorem 3 .  I f  c u r l  = 8 i n  a  star-convex region U ,  

then  $ = grad $ f o r  some + def ined  -i n  U .  

-The func t ion  $(XI = + (x )  + c i s  t h e  most genera l  -func-
_I-­

-b
t i o n  such t h a t  F = grad $. 
 

+ +

Proof. I f  c u r l  F = 0, then  D.F = D.F for a l l  i,

I j 	 I i 
j. I f  U is  star-convex, t h i s  f a c t  impl ies  t h a t  F i s  a 

g r a d i e n t  i n  	 U,  by t h e  Poincar6 l e m m a .  17 
 
Theorem 4 .  -The cond i t ion  
  

c u r l  $ 	= d -i n  u 

does n o t  i n  genera l  imply t h a t  3 i s  a  g r a d i e n t  i n  U.  

Proof. Consider t h e  vec td r  f i e l d  

3
It is def ined  i n  t h e  region  U c o n s i s t i n g  of a l l  of R ex­

c e p t  f o r  t h e  z-axis.  I t  is easy  t o  check t h a t  c u r l  ? = 8 .  
TO show i s  n o t  a g r a d i e n t  i n  U,  w e  l e t  C be t h e  u n i t  

c i r c l e  



~ ( t ) (cos t ,  s i n  t ,  0 ) ;= 

i n  t h e  xy-plane, and compute 

r t  fol lows from Theorem ]I t h a t  $ cannot be a g rad ien t  i n  U. 0 
Remark. A region U i n  R~ i s  c a l l e d  "simply 

connected" i f ,  roughly speaking, every c losed  curve i n  U 

bounds an o r i e n t a b l e  su r face  l y i n g  i n  U. The region R3­
( o r i g i n )  i s  simply connected, f o r  example, but  t h e  region 

R3- (z-axis )  i s  not .  

rt t u r n s  o u t  t h a t  i f  U i s  simply connected and i f  

, c u r l  $ = 8 i n  U ,  then i s  a g r a d i e n t  i n  U. The proof 

goes roughly a s  follows: 

Given a  c losed  curve C i n  U ,  l e t  S be an o r i e n t -  

a b l e  s u r f a c e  i n  U which C bounds. Apply Stokes t  theorem 

t o  t h a t  su r face .  One o b t a i n s  t h e  equat ion  

Then Theorem 1 shows t h a t  P i s  a g r a d i e n t  i n  U. 

NOW l e t  us  cons ider  t h e  next  t w o  opera t ions ,  c u r l  and 

d iv .  Again, w e  cons ider  on ly  f i e l d s  t h a t  a r e  cont inuously 

d i f f e r e n t i a b l e  i n  a  reg ion  U of  R
3 . There a r e  analogues of 

a l l  t h e  e a r l i e r  theorems: 

I 



- -- - -  - 
- - - 

- -- - 

Theorem 5 .  I f  F i s  a c u r l  i n  U, then 
  

11 5 t dS = 0 f o r  every o r i e n t a b l e  closed su r face  S i n  U .  
  
-S 
 

~ r o o f .  L e t  S be a c lased sur face  t h a t  l i e s  i n  U. 

(While we assume t h a t  S l ies  

i n  U ,  w e  do no t  assume t h a t  

U inc ludes  t h e  )-dimensional 

region t h a t  S bounds.) Break 

s up i n t o  two su r faces  S1 and 

S2 t h a t  i n t e r s e c t  i n  t h e i r  

common boundary, which is a simple smooth c losed  curve C. Now 

by hypothesis ,  
+­
G = c u r l  ? f o r  some def ined  i n  U .  W e  corn­

pute  : 

G n d s  = 11 c u r l  F mii d~ = - 1 H mda. 

S2 s2  . C ­

Adding, w e  see t h a t  , 

ema ark. The convers'e of Theorem 5 holds  a l s o ,  bu t  w e  

s h a l l  not  a t tempt  t o  prove it. 

Theorem 6.  I f  2 = c u r l  ? f o r  some ?, then  d i v  2 = 0. 

-Proof. By assumption, 



- - - -  
- -- 

- --- 
--- 

Then 

-+
div G = D F -D1 3 2(D1 2 3  D F 1 - (D2D1F3-DZD3Fl)+(D3DlF2-D3D2F1) 

Theorem 7. If div = 0 in a star-convex region U, 

then 2 = curl 3 for some 
+ 
F defined -in U. 

+ +
The function H = 	F + grad $ is the most general -func-

+ 
tion such that = curl H. 

We shall not prove this theorem in full generality. The 

proof is by direct computation, as in the ~oincar6 lemma. 

A proof that holds when U is a 3-dimensional box, or 

when U is all of R3 , is given in section 12.16 of Apostol. 

This proof also shows how to construct a specific such function 

in the given cases. 
 
-+ -+ 

Note that if 2 = curl ?$ and G = curl H, then 
+ + 

curl(H-F) = 8 .  Hence by Theorem 3, H - 5 = grad 4 in U, 

for some 4. 

Theorem 8. -The condition 

-t
d i v G = O  &I U 

--- that ---- U. 
does not in general imply - if is a curl in 



Proof. Let 2 be t h e  vector  f i e l d  

which i s  def ined  i n  t h e  region U c o n s i s t i n g  of a l l  of R3 

except  f o r  t h e  o r i g i n .  One r e a d i l y  shows by d i r e c t  computation 

t h a t  d i v  G = 0.  

I f  S i s  t h e  u n i t  sphere  centered  a t  t h e  o r i g i n ,  then w e  show 

t h a t  

his w i l l  imply (by Theorem 5)  t h a t  is n o t  a c u r l .  


I f  (x,y,z) is a p o i n t  of  St t h e n  I (x,y,z)B = 1, 

+ + + + *  

so G(x,y,z) = xi + yj + zk = n o  Therefore 

11 b*;  dA = 1 dA = ( a r e a  of sphere)  # 0. 0 



 erna ark. Suppose w e  say t h a t  a r eg ion  U i n  R3 i s  "two-

simply connectedw i f  every  closed su r face  i n  U bounds a 

s o l i d  region l y i n g  i n  U.* The region U = R 3- ( o r i g i n )  i s  nott'two­

simply connected", f o r  example, bu t  t h e  region U = R 3 - ( z  a x i s )  

-i s .  
I1 

r t  t u r n s  o u t  t h a t  i f  U is"two-simply connected and i f  
-b

d i v  G = 0 i n  U ,  then 2 i s  a c u r l  i n  U .  The proof goes 
 

roughly a s  follows: 
  

Given a c losed  s u r f a c e  S i n  U,  l e t  V be t h e  region  

it bounds. Since i s  by hypothesis  def ined  on a l l  of V,  

w e  can apply Gauss' theorem t o  compute 

+ 
Then t h e  converse of Theorem 5 implies. t h a t  G is  a c u r l  i n  U. 

There i s  much more one can say about t h e s e  matters, bu t  

one needs t o  in t roduce  a b i t  of a l g e b r a i c  topology i n  o rde r  t o  do 

so.  It is a b i t  l a t e  i n  t h e  semester f o r  t h a t !  

*The proper mathematical term for this is ffharalogically t r iv ia l  in dimension two." 
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